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Introduction

Long before it received its current name and value, the idea of pi was explored. Be-

cause of the common use of circles for tools and simple machines, it became important for

ancient civilizations to be able to calculate the area and circumference of a circle relative

to its radius. Before the current ratio of circumference to diameter was discovered, ancient

peoples used approximations for what came close to finding the actual area of a circle. As

time progressed, these approximations became more accurate. For example, records of the

use of pi during the time of the Babylonians (1900 BCE), can be found as 3 or 3.125, while the

ancient Egyptians used 3.1605 (“A Brief History” n.d.). As times changed and mathematical

knowledge progressed, mathematicians were able to develop calculations for the approxima-

tion of pi. These improved calculations were accompanied by new mathematical proofs rather

than half formed conjectures. Particular proofs of note, and the foci of this paper, are the

works of Mādhava of Saṅgamagrāma and James Gregory and Gottfried Leibniz.

The Kerala School of Astronomy and Mathematics

When asked to think about the history of mathematics, a number of famous math-

ematicians may come to mind. For example, many may recall Pythagoras and his famous

theorem for the hypotenuse of a triangle. Or one might think of the invention of calculus

and the storied rivalry of Newton and Leibniz. For the more seasoned mathematician, Euler

or Gauss may seem more impactful. In any case, Mādhava of Saṅgamagrāma is unlikely to

be at the forefront of one’s mind. And yet, Mādhava and his legacy of the Kerala School of

Astronomy and Mathematics, not only made major contributions to both of these subjects

but also made many of the aforementioned contributions before parallel discoveries were made

in Europe.

Mādhava established the Kerala School in the 14th century in the city of Kerala,

nestled between the Western Ghat mountains and the Arabian Sea at the southern tip of

India. Mādhava was born in 1360 in the town of Bakulavihāra— modern-day Irinjalakuda—

into the Brahmana caste— the most well-respected caste made up of those held in the highest

esteem. He was specifically an Empranthiri— a subcaste unique to Kerala (Plofker 2009).

During this age, Hinduism had a strong cultural influence and the caste system stood as the

main social structure of the Indian people. In Hindu tradition, the titles of ”priest” and
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“educator” were typically reserved for those of the Brahmana class, but the Kerala school

was unique in that it did not strictly abide by this convention. This is partially because the

region of Kerala had a far more complex caste system than the rest of India with around 420

castes (Hargrave 2021).

While Mādhava was indeed a Brahmana, many attendees of the Kerala school were

members of lower castes or followers of a non-Hindu faith. For example, there are records

of Muslim merchants, Nestorian Christians, and Jews in Kerala (Plofker 2009). Many of the

students of the Kerala school were of the caste Ambalavasis. Similar to Mādhava’s Empran-

thiri subcaste, Ambalavasi was a caste specific to Kerala, and Ambalavasis were traditionally

allowed to join in intellectual studies, but lacked influence and status. Under the guidance

of the Kerala school, several Ambalavasis were able to gain sway and receive recognition for

their mathematical and astronomical success (Pingree 2014).

Among the Kerala school’s students, there were several noted individuals whose works

have survived. Of those directly influenced by Mādhava, Parameśvara is perhaps the most im-

portant. Living along the Nil.ā River, Parameśvara is the only known direct pupil of Mādhava.

Although the exact timeline of his life and work is unknown, it is certain that Parameśvara

had a long and successful academic career with twenty-five documented works on astronomy,

astrology, and mathematics spread over a span of more than ninety years (Plofker 2009).

Following Parameśvara was his son and student Dāmodara. While he is known to have been

a member of the Kerala school, Dāmodara’s work has unfortunately not survived to modern-

day. Despite this fact, Dāmodara’s influence has not been entirely lost, as works from his

students Nı̄lakan. t.ha and Jyes.t.hadeva remain. Nı̄lakan. t.ha (born 1443) (Pingree 2014) is best

known for his work in astronomy in which he authored the Tantra-sangraha— a groundbreak-

ing piece of astronomical literature. Jyes.t.hadeva, the second student of Dāmodara, is best

known for his work the Yukti-bhasa which provided proofs for the mathematical procedures

in the Tantra-sangraha (Plofker 2009).

One of the final contributors out of the Kerala school was an Ambalavasi named

of Śaṅkara. Śaṅkara was a student of both Nı̄lakan. t.ha and Jysethadeva. During the mid-

16th century, Śaṅkara wrote commentary on both the Tantra-sangraha and the Yukti-bhasa

(Plofker 2009). In addition to Śaṅkara’s original works, he included extensive coverage of

Mādhava’s work in his publications— Yukti-dipika and Kriya-kramakari. Śaṅkara’s works
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have provided much of the knowledge we have regarding Mādhava’s proofs.

Mādhava and π

While Mādhava’s work is extensive and a number of his proofs were groundbreaking

for his time, the one that we will focus on in this paper is his approximation of pi. In his

approximation of pi, Mādhava established two methods to find the circumference of a circle

based on their radius. Both of these methods are outlined in Śaṅkara’s writings. The first

proof discussed by Śaṅkara relies on calculating the perimeter of many successive polygons.

To do this, a circle of radius, r, is constructed and a regular square, octagon, and 16-gon are

constructed around it. By definition, the square will have a side length of 2r as the sides

are congruent to the full diameter of the circle. Then, two tangent lines DB and GE are

constructed within the square. Point B bisects the first tangent line, and point E bisects the

second. The construction of the first quadrant of the circle can be seen below (Plofker 2009):

The next step is to find the length of CD. This is done using the similarity of triangles

HAC and DBC. This similarity can be seen as both are 45-45-90 triangles. Using the

similarity of these two triangles, the following equation follows:

CD = BC · CH

AC

In this equation, we let s = 2r which is the length of the circumscribed square. The length

of BC can then be found as the length from the center of the circle to point C (OC) minus

the length from the center to point B (OB) giving BC = OC − OB. The length of OC can
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be found using the Pythagorean Theorem which gives us

OC =

√(s
2

)2
+
(s
2
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√
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2
=
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s

2
, thus, BC =

s√
2
− s

2
.For the

second part of the proportion, lengths CH and AC must be identified. CH is one half of

the side of the square giving us CH = s
2 . The length of AC can be found by using the

Pythagorean Theorem to find OC and dividing by 2. This gives us AC =
s

2
√
2
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then be substituted into the original equation to find CD as follows:
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Using the length of CD, the length DH is found which gives half of the length of the

side of the octagon circumscribing the circle. Doubling this gives the length of the octagonal

sides. Using the length of the octagonal sides, it is now possible to find the length of the sides

of the 16-gon. The first vertex of the 16-gon is seen marked as point G on the construction. A

similar process using similar triangles is constructed and the following equation is produced

(Plofker 2009):

DG = DE · DH

DF
=

(√
DH2 + r2 − r

)
· DH

DH2/
√
DH2 + r2

This can be used to find GH which is half of a 16-gon side. This same process can be

repeated to find a 32-gon and so on and so forth to reach a circumference as precise as

desired. While this construction can be refined indefinitely, each iteration requires a heavy

amount of construction and increasingly complicated calculations.

In his second method of approximating circumference, Mādhava established an infinite

series with a correction term that is defined as follows (Plofker 2009)1:

C ≈ 4D

1
− 4D

3
+

4D

5
− · · ·+ (−1)n−1 4D

2n− 1
+ (−1)n

4Dn

(2n)2 + 1

While using this series to estimate circumference estimate is much easier than the first method

shown, the proof is far more complicated. The general idea of the proof is to find incrementally

1The final term of the series is the correction term not the general term for the series
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small arclengths of the circle using a series of constructed right triangles seen below (Plofker

2009):

Within this construction, a hypotenuse line, hi, and a perpendicular edge ei are iden-

tified in which hi =
√
r2 + (is)2 and ei =

sr
hi
. Using these two values, the arc ci can be found

as ci ≈ eir
hi−1 = sr2

hihi−1
≈ sr2

h2
i
. This only works under the assumption that sequential values

of hi are significantly close because we make the assumption that hi−1 ≈ hi. To continue

the proof from here requires a method of finding ci as a series and a way to combine these ci

together. These two factors can eventually be used to find a eighth of the circumference, the

equation for which can be seen below (Plofker 2009):

C

8
=

n∑
i=1

ci ≈ r − s

r2

n∑
i=1

(is)2 +
s

r4

n∑
i=1

(is)4 − s

r6

n∑
i=1

(is)6 + . . .

With more simplification, we arrive at:

C

8
≈ r − 1

r2
r3

3
+

1

r4
r5

5
− 1

r6
r7

7
+ . . .

which when D is substituted for 2r, is the same as our starting equation.

Using his proof, Mādhava was able to reach an approximation of pi stating that,

π = 2827433388233
900000000000 ≈ 3.14159265359 which is accurate to the eleventh decimal place. This

approximation was then expressed in verse using both the bhūtasaṅkhyā and the kat.apayādi

systems. The bhūtasaṅkhyā system is a method of numeric expression in which words are used

to represent different numbers (Pingree 2014). Each word corresponds to generally accepted

values of these words, mostly related to Hindu culture. For example, the word “Gods” is equal

to the number thirty-three due to either the 330 million total Hindu gods or the thirty-three

kinds of gods. We see thirty-three used here because unlike our modern base ten, during
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Mādhava’s time a sexagesmal system was the standard. In addition, these numbers are taken

in reverse order— beginning with the ones and tens places and working their way up. In this

case, Mādhava’s approximation is written as, “Gods [33], eyes [2], elephants [8], snakes [8],

fires [3], three [3], qualities [3], Vedas [4], naks.atras [27], elephants [8], and arms [2]— the wise

say that this is the measure of the circumference when the diameter of a circle is nine hundred

billion” (Pingree 2014). The kat.apayādi system of representation assigns consonants to each

number zero through nine. Then by using these consonants, followed by a vowel, sentences

can be formed as a representation of equations.

Mādhava’s approximation of pi was not his only mathematical contribution. In fact, he

had several, arguably better known, proofs including infinite series approximating the trigono-

metric functions. One of Mādhava’s most well known verses is for his series for sine, written

using the kat.apayādi system. In it Mādhava writes, “The ruler whose army has been struck

down gathers together the best of advisors and remains firm in his conduct in all matter; then

he shatters the (rival) king whose army has not been destroyed” (Pingree 2014). This verse

corresponds to the first six terms of the power series for sine using a sexagesimal translation.

Similarly, series for cosine and tangent were also discovered and recorded by Mādhava. These

discoveries along with the subsequent development of a series for arctangent, lead to another

approximation of pi by the name of the Gregory-Leibniz series.

Gregory-Leibniz

The Gregory-Leibniz series utilizes the infinite series for arctangent to approximate

pi. This series was independently discovered and proved by both Gregory and Leibniz in the

mid-1600s and thus both receive the credit for this approximation (Roy 1990). There are

however, many disputed claims on whether or not Gregory found the specific case of tan−1 (1)

or π
4 which is what Leibniz used to find pi. This case was essential to the approximation at the

time because it meant that the series was made up entirely of rational numbers. Regardless

of this fact, both of these men’s proofs are acknowledged as crucial for this approximation of

pi.

Gottfried Leibniz was born 1646 in Leipzig, Germany where he spent his early years

and received his undergraduate education (Look, Belaval 2021). After being denied his doc-

torate of law from the University of Leipzig, he moved to Nürnberg where he received his
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doctorate before eventually traveling to Paris (Look, Belaval 2021). It is in Paris that Leibniz

met Christiaan Huygens who inspired him to begin his study of geometry and expand on his

knowledge of mathematics (Roy 1990). Leibniz’s studies brought him to the work of Blaise

Pascal which in turn inspired his construction of a geometric proof for the infinite equation

representing π
4 . This was done by employing the idea of an infinitesimal triangle (Roy 1990).

To begin his construction, Leibniz constructed a curve, y = f(x). He then took this

curve and constructed a triangle between the origin and two arbitrarily close points, P and

Q, on the curve. This can be seen in the diagram below (Roy 1990).

In addition to triangle PQO, there are several other features of note. Line PT is

tangent to the curve, f(x), at P and OS is perpendicular to the tangent line. In addition, the

constructed rectangle ABCD is exactly double the area of the triangle OPQ. Leibniz also

designates p as the length of OS and z as the length of OT . Then using the fact that triangle

PQR is similar to OST then the following ratio can be established:

dx

p
=

ds

z

Based on this ratio, we find that area(OPQ) = 1
2pds =

1
2zdx. Then by establishing a point A

from every point P a second curve z = g(x) can be created. Then allowing the sector OLM

to be the region enclosed by f and lines OL and OM , then area(OLM) = 1
2

∫ b
a g(x)dx. From
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this, the area under the curve f can be calculated as

∫ b

a
ydx =

b

2
f(b)− a

2
f(a) + area (sector OLM)

=
1

2

(
bf(b)− af(a) +

∫ b

a
g(x)dx

)
=

1

2

(
[xy]ba +

∫ b

a
zdx

)

From the diagram, z can be established as y − x dy
dx and through substitution we arrive on

∫ b

a
ydx = [xy]ba −

∫ f(b)

f(a)
xdy

which should be recognizable as integration by parts.

We now apply this to the particular case of a circle. With the designation that this

circle is centered at (1, 0) and has radius 1, we arrive on the equation y2 = 2x−x2 and, using

the previously established equation for z, find that z = x
y and x = 2z2

1+z2
. An arbitrary θ is

then created using the established circle as seen in the diagram below:

Using this, an equation for theta can be established as

θ = z −
∫ z

0

t2

1 + t2
dt

From this, and using additional information from Nicolaus Mercator’s work, we arrive on the

equation

θ = z − z3

3
+

z5

5
− . . .

Since ̸ ABC = θ and z = x
y = tan θ, this series becomes a definition for arctan z

As Leibniz studied, a Scottish man by the name of James Gregory was completing
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much the same work. Gregory was born in 1638 Scotland (Malet 2021). He attended his

initial schooling in Aberdeen, before traveling Europe and eventually settling in Italy (Malet

2021). In Italy, Gregory began his study of geometry and in turn discovered the work of

many notable geometrists including Pierre de Fermat and Torricelli (Roy 1990). Following

his studies in Italy, Gregory traveled to London before returning to his homeland of Scotland

where he worked at the University of St. Andrews and then the University of Edinburgh

(Malet 2021).

Before his time at Edinburgh, Gregory had already released several publications. The

Optica Promota was his first book which focused on astronomy and described a reflecting

telescope (Roy 1990). He published two more books during his time in Italy: Vera Circuli et

Hyperbolae Quadratura and Geometriae Pars Universalis. Both of these books covered exten-

sive geometric proofs— some more successfully than others— but one of the most important

was in Geometriae Pars Universalis which provided a geometric proof to the fundamental

theorem of calculus. Finally, Gregory published the Exercitationes Geometricae which dis-

cussed the logarithmic function as well as indefinite integrals for secant and tangent (Roy

1990).

During his time at Edinburgh, Gregory continued his mathematical explorations though

he did not publish any of his works. Instead, records of Gregory’s discoveries can be found in

correspondence between Gregory and his friend John Collins who he had met during his time

in London (Roy 1990). In these correspondences, Gregory described his binomial expansion

for arbitrary exponents similar to the more generally accepted method by Newton. In addition

Gregory used Newtons findings, sent to him by Collins, to derive equations for arctanx, tanx,

secx, log secx, log tan (π4 + x
2 ), arcsec (

√
2ex), and 2 arctan tanh (x2 ) (Roy 1990). Gregory did

nothing with these findings due to the fact that he believed himself to have found them using

the method that Newton had already established. Further investigation into Greogry’s work

however, shows that he had actually done the opposite, instead outlining steps that would

later become general rules for Taylor series. This was done by taking successive derivatives

and operating them together with previous steps in the series (Roy 1990). While these were

indeed groundbreaking discoveries, Gregory, believing his work to be unoriginal, never pub-

lished, and passed away in 1675 before receiving any real credit for his work in calculus (Roy

1990).
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From the work of both Gregory and Leibniz, a more modern proof for the approxi-

mation of pi can be established. This approximation uses the concept of Taylor series and

integrals to create a series that, as the number of terms approaches infinity, the sum ap-

proaches the exact value of pi. We begin with a simple Taylor Series:

1

1− y
= 1 + y + y2 + · · ·+ yn + . . .

This series is the base formula for a geometric series with common ratio: y, a first term of

1, and a domain limitation of −1 < y < 1 in order for the series to converge. While this is

not extremely relevant in this stage of the process, it is important to keep in mind that a

domain has been established and said domain will continue to need to be applied throughout

the process. We then substitute the variable y for −x2 and create the following series:

1

1 + x2
= 1− x2 + x4 + · · ·+ (−x2)n + . . .

It is prudent to notice that this series is still a geometric series, now with a common ratio:

−x2 and there is still the domain restriction of −1 < x < 1.

For the next step of the process, we must recognize that the left side of the equation,

1
1+x2 , as the derivative of arctanx. Thus, to find arctanx, we must take the integral of both

sides of the equation as follows:

tan−1 x =

∫
1

1 + x2
dx =

∫
1− x2 + x4 + · · ·+ (−x2)n + . . . dx =

∫ ∞∑
n=0

(−x2)ndx

tan−1 x = x− x3

3
+

x5

5
− · · ·+ (−1)n

2n+ 1
x2n+1 + C =

∞∑
n=0

(−1)n

2n+ 1
x2n+1 + C

The C value can then be calculated used a scenario when x = 0. This process is as follows:

tan−1 0 =

∞∑
n=0

(−1)n(0)2n+1

2n+ 1
+ C = 0− 03

3
+ 055− · · ·+ (−1)n

2n+ 1
02n+1 + C = 0

C + 0 = 0

C = 0

Having now obtained a complete Taylor series for arctangent, we can use the fact that
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tan−1 1 = π
4 to find pi by setting x equal to 1 leaving:

tan−1 1 = 1− 13

3
+

15

5
− · · ·+ (−1)n

2n+ 1
12n+1 + . . .

=
∞∑
n=0

(−1)n

2n+ 1
12n+1

=
π

4

It is important to verify that this is a valid application of x to the equation. The original

domain established in the first geometric series, states that −1 < y < 1, however, the while

the center, 0, and radius, 1, are held constant, the changes made to the equation have altered

the end behaviors— in this case both endpoints converge2.

The final step in the estimation process is to multiply both sides by 4 in order to

change π
4 into π.

4
(π
4

)
= 4

[
1− 13

3
+

15

5
− · · ·+ (−1)n

2n+ 1
12n+1 + . . .

]
π = 4− 4

3
+

4

5
− · · ·+ 4(−1)n

2n+ 1
+ . . .

As the number of terms in the series approaches infinity, the value becomes increasingly

closer to the true value of pi. While the initial equation is vastly inaccurate with P1 = 4 and an

error of over 1.33, as more terms are included, accuracy increases. For example, P100 = 3.1316

and has an error of less than 0.02.3

As more and more terms are added to the series, the rate at which the approximation

becomes more accurate slows down. For example, P1000 = 3.14059, which is 900 more terms

than P100, is only more accurate by 0.01790 while P100, which is only 99 more terms than P1,

is more accurate by 0.96970. A more complete list of approximations using this method can

be seen below:

2This can be found through the alternating series test
3These errors can be calculated due to the alternating characteristics of the series for pi
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Number of Terms Value Error

1 4 ≤ 1.33333

5 3.33968 ≤ 0.36364

10 3.04184 ≤ 0.19048

20 3.09162 ≤ 0.09756

50 3.12159 ≤ 0.03960

100 3.13159 ≤ 0.01990

The Gregory-Leibniz series at x = 1 converges extremely slowly. In order to get a

more precise value more quickly, there are variations of this series that can be used. The

simplest way to increase accuracy is to use a smaller value of x. For example, if we set x equal

to 1√
3
which is the tangent of π

6 the resulting series is (Lynn n.d.):

tan−1(
1√
3
) =

π

6
=

1√
3
−

1√
3

3

3
+

1√
3

5

5
− · · ·+ (−1)n

2n+ 1

1√
3

2n+1

+ . . .

6
(π
6

)
= 6

 1√
3
−

1√
3

3

3
+

1√
3

5

5
− · · ·+ (−1)n

2n+ 1

1√
3

2n+1

+ . . .


π =

6√
3
−

6√
3
3

3
+

6√
3
5

5
− · · ·+ 6(−1)n

2n+ 1

1√
3

2n+1

+ · · · =
∞∑
n=0

6(−1)n

2n+ 1
(
1√
3
)2n+1

A list of approximations using π
6 and the corresponding error using alternating series properties

can be seen below:

Number of Terms Added Value Error

1 3.46410 ≤ 0.38490

5 3.14260 ≤ 0.00130

10 3.1415905109 ≤ 0.00000279

20 3.1415926535 ≤ 2.42316× 10−11

This simple change of the value for x that is being substituted has large effects on the

convergence of the equation because it affects the constant that each term is multiplied (4 vs

6) which affects the size of the value of each term. This change is also important because it

affects how close the starting value is to the true value of π. The π
6 multiplied by 6, which is

what is used when 1√
3
is used as the x value, is equal to 3.464 which is a starting value much
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closer to pi than 4 — the starting value when 1 is used as the value of x. This is because

the value of π
6 is closer to having a matching value with pi on a regular tangent curve. The

tangent of pi is 0 and thus the closer the starting tangent is to 0, the more rapidly the system

converges. This can be easily seen on an arctangent graph.

As seen on the graph, point A has a closer x-value to that of point C than point B.

This greater similarity to pi leads to a quicker rate of convergence.

While these series certainly converge more quickly, they require the ability to calculate

irrational square roots which was not a highly developed method at the time. Isaac Newton

would later publish his binomial theorem which could be used to approximate the values of

any rational exponent but this would not appear in correspondence until 1676, after both

Leibniz and Gregory had already made their respective discoveries.

Recognition

Credit for the creation of this series and approximation is extremely muddled. In

addition to both Gregory and Leibniz working during the same time period but separately,

Newton’s development of calculus certainly plays a role in the modernized version of this

proof. Not only that, Mādhava is generally acknowledged as having discovered the series

representations of these trigonometric functions several centuries before the Europeans were

even born, but is not given credit for this approximation of pi. In fact even Mādhava’s credit is

jumbled as his work has also been credited to Nı̄lakan. t.ha. This, of course, begs the question—

why did Mādhava, or Nı̄lakan. t.ha, perhaps not receive sole credit for this work? And why does

the historical lens of mathematics remain so firmly in Europe?

The answer largely comes down to an issue of isolation. While major ideas were
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explored and well documented within the Kerala school, dispersion of these discoveries was

highly limited. Due to this seclusion, very few publications made it out of the Kerala school,

and those that did only made it to surrounding areas of India. In addition to its physical sep-

aration, there were major issues of cultural isolation. While the Kerala school was somewhat

progressive for its time, the rest of the nation remained heavily divided with only Brahmins

being involved in education and information exchange (Dani 2012). This greatly restricted

the passage of knowledge among scholars and kept publications from being shared to a wider

audience.

Secondly, a major language barrier further limited the transfer of knowledge. Nearly

all of the publications that came out of the Kerala school were published in either Sanskrit or

Malayālam. Even if all of Mādhava’s publications had reached Europe by the time Gregory

and Leibniz had begun their work it is unlikely anyone would have been able to understand the

information being conveyed. Because of this, when Gregory and Leibniz published their work,

this Taylor series approximation had never been seen by the majority of the mathematical

world. Naturally, the credit for this “discovery” went to these two men.

In addition, there is the fact that the Kerala School was far before its time and thus

there were few people who would’ve been able to understand the concepts being put on by

these mathematicians even without these other obstacles. The Kerala School rose and fell

before European mathematics had reached its level of understanding and thus there was no

one to give proper recognition to these brilliant minds. Although Vasco da Gama did make

contact with the Kerala coast in the 16th century, it was not until the early 17th century, when

the British East India company began to establish trade, that European contact with India

truly began. However this trade was limited to east coast cities such as Calcutta (Plofker

2009). Exchange of mathematical knowledge between Europe and India did not begin until

the late 1700s (Plofker 2009)— over a century after the work of Gregory and Leibniz. Just as

Gregory did not receive credit for his works on calculus due to his untimely death, so did the

Kerala School’s praise remain unsung.

Although the Kerala school has not received recognition and credit for its mathemat-

ical and astronomical discoveries, its contributions should not be understated. This school

stands as a phenomenal representation of academic excellence beyond a Eurocentric scope.
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