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India experienced three distinct periods of mathematical and astronomical growth [4, p. 

1]. The last period, before the modern era, saw a rise to the beginnings of calculus and an 

exploration of mathematical analysis. Mādhava of Sangamagrāma (c. 1340-1425) founded a 

school in this last period, the Nila school [6, p. 481]. Approximately two-hundred years later a 

student of the school, Jyeṣṭhadeva, contributed an incredible mathematics and astronomical 

treatise on a palm-leaf [12, p. xxxiv]. Both mathematicians and the many others who were part of 

the Nila school made important advancements in mathematics and astronomy, but India has been 

historically ignored by western scholars who allowed assumptive attitudes regarding their 

contributions to form their opinions [5, p. 311]. The history of the Nila school and its student, 

Jyeṣṭhadeva, provides grounds that the attitudes regarding Indian advancements were unfounded.  

The Nila River in western India, known today as Bharathappuzha, and its shores have 

facilitated intellectual growth for thousands of years [6, pp. 385-507]. In the 13th century the area 

surrounding the Nila River came under the protection and patronage of the kings of the Zamorin 

dynasty which brought peace to the area [4, p. 257]. With this peace and prosperity, the 

traditional pupil-teacher relationship thrived, and a school of mathematics was born along its 

shores during the 14th century. It has been given the name the Kerala school in some texts, which 

ignores its geographic location and the importance of the river itself. Kerala is a state that 

stretches the length of the western shores of the Indian peninsula, but Nila River is situated 

within a small portion of the Kerala state. Many of the mathematicians and astronomers that are 

considered part of this school lived and worked within the illams or manas (traditional 

compounds or estates) along the river that extends into mainland India. Thus, it is more 

appropriately referenced as the Nila school in many modern works. It will be referenced as the 

Nila school below. [4, p. 259] 
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The birth of the Nila school began with Mādhava of Sangamagrāma (c. 1340-1425). His 

life is shrouded in obscurity and his only existing works are regarding astronomy [5, p. 380].  He 

is credited with providing the groundwork for the Gregory (1638-1675) series for arctangent, the 

Leibniz (1646-1716) series for 𝜋, and the infinite series for circular and trigonometric functions 

during his life [5, p. 419]. Though much of his work is presumed lost or never written, his pupils 

provided a wide array of works and treatises that expanded on his discoveries. These concepts 

were presented hundreds of years before they appeared in Europe, yet India’s mathematicians 

and their corresponding works have been largely ignored. Western mathematicians have brushed 

them aside as cheap copies of Grecian work, that lack formal proof to substantiate them. 

American Mathematician C.B. Boyer writes: [1, p. 194] 

“Indian Mathematics is frequently described as ‘intuitive,’ in contrast to the stern 

rationalism of Greek geometry.”  

This attitude is not rare. Morris Kline, another great American mathematician, also held a similar 

view. [8, p. 190] 

"As our survey indicates, the Hindus were interested in and contributed to the 

arithmetical and computational activities of mathematics rather than the deductive 

patterns. Their name for mathematics was gaṇita, which means “the science of 

calculation.” There is much good procedure and technical facility, but no evidence that 

they considered proof at all. They had rules, but apparently no logical scruples. 

Moreover, no general methods or new viewpoints were arrived at in any area of 

mathematics.”  

Both Kline and Boyer wrote their respective works, Mathematical Thought from Ancient 

to Modern Times in 1972 and The History of Mathematics in 1968. A source book, completed in 
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1985 listed 285 published Indian works in mathematics and astronomy completed between the 

12th century and the 19th century [13]. It is estimated that 100,000 ancient Sanskrit manuscripts 

exist regarding mathematics and astronomy with only 95 of these having been translated into 

European languages [9, p.1]. Thus, the pool of works available to either scholar at the time of 

their respective publications was small, diminishing their ability to take a full appreciation of the 

mathematics from India. Efforts on the part of western scholars have been minimal until the 

recent millennium in which reliable translations and trustworthy source books have been 

produced. In 2008, Srinivas wrote: [15, p. 214] 

“A major reason for our lack of comprehension, not merely of the Indian notion of proof, 

but also of the entire methodology of Indian mathematics, is the scant attention paid to 

the source-works so far.”  

There are two Sanskrit words used for mathematical arguments. The more popular word, 

upapatti, translates into English as “proving right” or “resulting” and is often used when 

referring to what is considered an informal style western proof. The earliest mathematical 

argument that is considered an upapatti is within the Bhasya of Govindasvāmin (c. 800) which is 

a commentary on Bhāskara I’s (c. 600-680) Mahābhāskarīya [14, p. 215]. Bhāskara II (1114-

1185) wrote: [14, pp. 228-229] 

“Without the knowledge of the upapatti-s, by merely mastering the gaṇita (calculational 

procedures) described here, … a mathematician will not have any value in the scholarly 

assemblies; without the upapatti-s he himself will not be free of doubt (niḥsaṃśaya).” 

 Upapatti-s have been observed by modern scholars since C.M. Whish (1795-1833) when his 

article, published in 1834 post-mortem, titled ‘On the Hindu Quadrature of the Circle, and the 

infinite Series of the proportion of the circumference to the diameter exhibited in the four 
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S’astras, the Trantra Sangraham, Yucti Bhasha, Carana Padhiti, and Sadratnamala’ included 

translations of portions of the mentioned works and defended their use of proofs [16]. His 

translations and subsequent discoveries of the mentioned works went relatively unnoticed and his 

promise to publish more on the subject was broken as he passed shortly before the article above 

was published. 

 The word yukti is a more precise term, which conveys “reasoning”, “an argument”, or 

“correctness of,” and usually follows a formal proof. Kṛṣṇa Daivajña in a 16th century 

commentary wrote: [14, pp. 218-219] 

“How can we state without proof (upapatti) that twice the product of two quantities when 

added or subtracted from the sum of their squares is equal to the square of the sum or 

difference of those quantities? 

[𝑎2 + 𝑏2 + 2𝑎𝑏 = (𝑎 + 𝑏)2 and 𝑎2 + 𝑏2 − 2𝑎𝑏 = (𝑎 − 𝑏)2] 

That it is seen to be so in a few instances is indeed of no consequence… as it is possible 

that one would come across contrary instances (vyabhicāra) also. Hence it is necessary 

that one would have to provide a proof (yukti) for the rule…” 

The term yukti is becoming increasingly more common as more precise translations of 

expositions and commentaries are published. Divakaran wrote in 2018: [4, p. 404] 

“As if to advertise these newly recognized virtues, there is a subtle shift in the 

terminology as well, the old upapatti making way gradually for the term yukti.” 

A highly regarded treatise that contains upapatti-s and yukti-s is the recently translated 

Yuktibhāṣā (Rationales in Mathematical Astronomy). It was otherwise written in 1530 by Indian 

mathematician and astronomer Jyeṣṭhadeva [14, p. 218]. The modern English translation by 

Sarma (1919-2005) was published post-mortem in 2008 and is titled the Ganita-Yukti-Bhāsā 
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[12]. It is uncertain why Sarma chose this new name, but the treatise is known in both Sanskrit 

and Malayālam as the Yuktibhāṣā and will be referenced as such here [4, p. 295]. Extraordinarily 

little is known about Jyeṣṭhadeva’s life, including the period in which he lived which is estimated 

as between 1475 and 1575 [10, p. 606] or 1500 and 1610 [12, p. xxi]. His greatest work, the 

Yuktibhāṣā, was incorrectly credited to a different author [12, pp. xxiv]. Evidence of the true 

author was on a palm-leaf manuscript in Malayālam. It contained sound evidence crediting 

Jyeṣṭhadeva as the author. This palm-leaf reads as a chronology and commentary of the lineage 

of the Nila school, and is housed at the Oriental Institute, Baroda, Ms. No. 9886 and gives the 

order of students after Vāṭaśśeri Parameśvara (lived between 1360 and 1460). Parameśvara’s 

pupil and son was Vāṭaśśeri Dāmodara (fl. 1450) who in turn was the mentor to Nīlakaṇṭha 

Somayājī (lived between 1443 and 1544). Nīlakaṇṭha followed the teacher-pupil tradition and 

was the mentor to Jyeṣṭhadeva [5, p. 420]. The palm-leaf gives for each mathematician a mention 

of their works, in which it states that Jyeṣṭhadeva is the author of Yuktibhāṣā [12, p xxxvii]. The 

teacher to Parameśvara, not stated on the palm-leaf manuscript but known to us, was Mādhava of 

Sangamagrāma (c. 1340-1425), who founded the Nila school. 

The claim in the Yuktibhāṣā is that the principal ideas are based on Mādhava’s 

mathematics and an expansion of Nīlakaṇṭha’s Tantrasaṅgraha (c. 1501), a work that revised the 

Aryabhatan model for planet interiors and provided a close approximation of the equation of the 

center. Better approximations would not appear until Johannes Kepler (1571-1630) [5, p. 421]. 

The Yuktibhāṣā is a remarkable work. Modern translations divide it into two sections, the 

first on mathematics and the second regarding astronomy [12]. There are seven chapters in the 

mathematical section of the Yuktibhāṣā. The focus here is on chapter six, titled Circle and 

Circumference. The sixth chapter begins with a simple but highly effective yukti of the so-called 
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Pythagorean Theorem, which was well known in India. This knowledge dates to Bhāskara I and 

his commentary on Aryabhaṭa’s treatise, the Āryabhaṭīya (c. 629), which is the oldest known 

mathematical prose in Sanskrit [7, p. 10]. 

 Translator notes are inside <angle brackets>. My commentary is inside [square 

brackets]. Any accompanying illustrations are mine.  

____________________________________ 

6.1 Bhujā 2 + Koṭi2 = Karṇa2 [12, pp. 45-46] 

[Theorem] 

It is explained here <how>, in a rectangle, the sum of the squares of a side and of the height is 

equal to the square of the diagonal 

 [Also referred to as the cut-and-move proof, similar to Nīlakaṇṭha Somayājī’s, the 

mentor of Jyeṣṭhadeva, though his work has not been reliably translated. Bhujā, koṭi, and 

karṇa are common variables assigned when working with geometry. Karṇa often 

represents the hypotenuse of a triangle.] 

[Theorem statement in symbols] 

Now, the square of a length is the area of a square having <that length> as its side. In a square or 

in a rectangle, the diagonal < karṇa> is the straight line [line segment] drawn from one corner to 

its opposite corner through its centre. 

In a rectangle, the koṭi stretches lengthwise on two lateral [horizontal] sides. The two vertical-

sides called bhujā will be shorter, as presumed here. [bhujā < koṭi]. 
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It is the diagonal [karṇa] of such a rectangle that is sought to be known.   

[Proof] 

Now, draw a square <with its side> equal to the koṭi and another equal to the bhujā. Draw, in this 

manner, two squares. 

  

Let the bhujā -square [smaller square] be on the northern side and the koṭi-square [larger square] 

on the southern side in such a way that the eastern side of both the squares fall on the same line; 

and in such a manner that the southern side of the bhujā -square falls on the northern side of the 

koṭi -square. This <northern> side <of the koṭi -square> will be further extended in the western-

side than the bhujā <since it is longer>. 
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From the north-east corner of the bhujā square, measure southwards a length equal to the koṭi 

and mark the spot with a point. From this <point> the <remaining> line towards the south will be 

of the length of the bhujā. 

 

Then cut along the lines starting from this point towards the south-west corner of the koṭi -square 

and the north-west corner of the bhujā -square. Allow a little clinging at the two corners so that 

the cut portions do not fall away. [Jyeṣṭhadeva would have imagined this figure as constructed, 

from paper or fabric, thus he uses terms such as “cut”, “clinging”, and similar language below.] 

 

 Now break off the two parts <i.e., the [congruent] triangles> from the marked point,  
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turn them round [to] alongside the two sides of the bigger <i.e., koṭi> square, so that the corners 

of the triangles, which met at that point earlier, now meet in the north-west direction, and join 

them so that the cut portions form the outer edges. [Imagine the northern right triangle rotated 

clockwise around the northwest corner of the bhujā-square and the southern right triangle rotated 

counterclockwise around southwest corner of the koṭi-square to their new positions.] 

 

 

The figure formed thereby will be a square and the sides of this square will be equal to the karṇa 

associated with the <original> bhujā and koṭi. 
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Hence it is established [by the “cut-and-move proof”] that the sum of the squares of the bhujā 

and koṭi is equal to the square of the karṇa [bhujā 2 + koṭi 2 = karna2] and it also follows that if 

the square of one of them is deducted from the square of the karṇa, the square of the other will 

be the result. This is to be understood in all cases.  

[End of proof]  

___________________________________________ 

Note that a Euclidean geometry proof would require verification that the “figure formed 

thereby will be a square” by referencing Euclid I-32 that “In any triangle, … the three interior 

angles of the triangle are equal to two right angles.” But mathematics in India had a different 

point of view. Srinivas summarizes: [14, pp. 231-232] 

“1. The Indian mathematicians are clear that results in mathematics… cannot be accepted 

as valid unless they are supported by yukti or upapatti. It is not enough that one has 

merely observed the validity of a result in a large number of instances… 

4. In the Indian mathematical tradition the upapatti-s mainly serve to remove doubts and 

obtain consent for the result among the community of mathematicians. 

7. …There was apparently no attempt to present the upapatti-s as a part of the deductive 

axiomatic system… there was no attempt at formalization of mathematics.” 
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This proof illustrates that the use of yukti-s (formal proofs) existed in India since at least 

1530 and that mathematicians of the time were aware of geometry and its many uses. This yukti 

uses an ancient Indian practice of cut-and-paste or in this case, cut-and-move. Documentation 

shows that this physical style of written instructions existed in India since the Baudhayana-

Sulbasutra (c. 800-600 BCE) [6, pp. 387-392]. The same text provides a problem, 2,300 years 

before the Yuktibhāṣā, that reads: [6, p. 389] 

“The areas [of the squares] produced separately by the length and the breadth of a 

rectangle together equal the area [of the square] produced by the diagonal. This is 

observed in rectangles having sides 3 and 4, 12 and 5, 15 and 8, 7 and 24, 12 and 35, 15, 

and 36.”  

While this unproven generalization from six examples, without an upapatti is simple, it 

illustrates that there had been an interest in geometry for thousands of years and Indians had 

developed their own understanding of mathematics outside of Greek influence. This proof given 

above is the beginning of one of the most interesting chapters in Yuktibhāṣā, and provides 

contrast to the statement of Kline in his chapter of Indian Mathematics; [8, p 189] 

“They offered no geometric proofs; on the whole they cared little for geometry.”  

 

Chapter six also includes passages on Sankalita (Summation of series). The sum of 

natural numbers was known at least since Āryabhaṭa I (476-550). The only surviving work 

authored by him, the Āryabhaṭīya, contains the sections, “Sum of Series Formed by Taking 

Sums of Terms of an Arithmetical Progression” and “Sums of series Formed by Taking Squares 

and Cubes of Terms of an Arithmetical Progression.” Neither section contains an upapatti as 

they are examples of problems and their solutions [2, pp. 37-38]. Other mentions of arithmetic 
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progression occurred within Brahmagupta’s (b. 598) Brahama Sphuta Siddanta (628), 

Mahavira’s (9th century) Ganitha Sara Sangraha (850), and Narayana Pandita’s (14th century) 

Gaṇita Kaumudi (1356) but do not include yukti-s [3, p. 265]. Nīlakaṇṭha gave geometrical 

demonstrations involving progressions but his student, Jyeṣṭhadeva, built upon his predecessor's 

knowledge of summation, improved upon them and provided yukti-s. While reading these yukti-s 

it is to be noted the repetition within each one.  

“The reiteration of the key idea is a measure of importance Nīlakaṇṭha [Jyeṣṭhadeva’s 

mentor] attached to getting it across, a pedagogic device Yuktibhāṣā also uses to good 

effect.” [4, p. 270] 

_________________________________________________ 

6.4 Sankalita: Summation of series [12, p. 61] 

 

Now is described the methods of making the summations <referred to in the earlier sections>. At 

first, the simple arithmetical progression <kevala-sankalita> is described [1 + 2 + ⋯ + 𝑛]. This is 

followed by the summation of the products of the equal numbers <squares> [12 + 22 + ⋯ + 𝑛2]...  

 

6.4.1 Mūla-sankalita: [Finite] Sum of natural numbers [1 + 2 + 3 + ⋯ + 𝑛] [12, pp. 61-62]  

 

Here, in this mūla -sankalita <basic [finite] arithmetical progression>, the final bhujā [variable] 

is equal to the radius. 

[The context for the use of the words “radius” and “hypotenuses” here is described in 6.3.1, p. 

49, and illustrated there by the following figure, although this “context” does not influence the 

argument below.] 
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The term before that will be one segment <khanda> less. The next one will be two segments 

less.  

[This finite arithmetical progression of n terms has the form  

𝑟𝑎𝑑𝑖𝑢𝑠 − (𝑛 − 1), … ,  𝑟𝑎𝑑𝑖𝑢𝑠 − 2,  𝑟𝑎𝑑𝑖𝑢𝑠 − 1,  𝑟𝑎𝑑𝑖𝑢𝑠  

where “radius” may not be a natural number length.] 

Here, if all the terms <bhujā -s> had been equal to the radius, the result of the summation would 

be obtained by multiplying the radius by the number of bhujā -s.  

[If the n terms were all “radius”, then 𝑟𝑎𝑑𝑖𝑢𝑠 + ⋯ + 𝑟𝑎𝑑𝑖𝑢𝑠  =  𝑛 ⋅ 𝑟𝑎𝑑𝑖𝑢𝑠 .] 

However, here, only one bhujā is equal to the radius. And, from that bhujā, those [vertical legs in 

the figure] associated with the smaller hypotenuses are less by one segment each, in order. Now, 

suppose the radius to be the same number of units as the number of segments to which it has 

been divided, in order to facilitate remembering <their number> [𝑟𝑎𝑑𝑖𝑢𝑠 = 𝑛  units, so the sum 

above if “all the terms <bhuja-s> had been equal to the radius” is 𝑛 + ⋯ + 𝑛 = 𝑛 ⋅ 𝑛 ]. The 

number associated with the penultimate [next to last] bhujā will be less by one <from the number 

of units in the radius> [meaning 𝑛 − 1 ]; the number of the next one, will be less by two from the 

number of units in the radius [𝑛 − 2 ]. This reduction <in the number of segments> will increase 

by one <at each step>. The last reduction will practically be equal to the measure of the radius 
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[the last reduction = 𝑛 − 1 ≈ 𝑛 = 𝑟𝑎𝑑𝑖𝑢𝑠 ], for it will be less only by one segment. In other 

words, when the reductions are all added, the sum thereof will practically <prāyeṇa> be equal to 

the summation of the series from 1 to the number of units in the radius; it will be less only by 

one radius length.  

[Step 1: the reduction in the number of segments is 1 from 𝑛 units to 𝑛 − 1 units; 

Step 2: the reduction in the number of segments is 2 from 𝑛 units to 𝑛 − 2 units; 

⋯   

Step 𝑛 − 1 : the reduction in the number of segments is 𝑛 − 1 from 𝑛 units to 1 unit. 

So, since 1 + 2 + ⋯ + (𝑛 − 1) = (1 + 2 + ⋯ + 𝑛) − 𝑛 we have  

(𝑠𝑢𝑚 𝑜𝑓 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑠) = 𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛 − 𝑛.] 

Hence, the summation will be equal to the product of the number of units in the radius with the 

number of segments plus one, and divided by 2.  

[Since the reductions 1,  2,   … ,  𝑛 − 1 equal the remaining units out of 𝑛 , namely 

𝑛 − 1,  𝑛 − 2,   … ,  1  listed in reverse, starting from above we have  

𝑛 ⋅ 𝑛 = 𝑛 + ⋯ + 𝑛  

= [1 + (𝑛 − 1)] + [2 + (𝑛 − 2)] + ⋯ + [(𝑛 − 1) + 1] + 𝑛 

= (𝑓𝑖𝑟𝑠𝑡 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 + 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔) + ⋯ + (𝑙𝑎𝑠𝑡 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 + 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔) + 𝑛 

= (𝑠𝑢𝑚 𝑜𝑓 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑠) + (𝑠𝑢𝑚 𝑜𝑓 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔) + 𝑛 

= (𝑠𝑢𝑚 𝑜𝑓 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑠) + (𝑠𝑢𝑚 𝑜𝑓 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑠) + 𝑛 

= 2(𝑠𝑢𝑚 𝑜𝑓 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑠) + 𝑛 

= 2(𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛 − 𝑛) + 𝑛 

= 2(𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛) − 𝑛. 

𝑛 ⋅ 𝑛 + 𝑛 = 2(𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛) 

𝑛⋅(𝑛+1)

2
= 𝑠𝑢𝑚𝑚𝑎𝑡𝑖𝑜𝑛.] 
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The summation of all the bhujā -s of the different hypotenuses is called bhujā -sankalita.  

[How to approximate a very large sum of natural numbers] 

Now, the smaller the segments, the more accurate <sūkṣma> will be the result. Hence, do the 

summation also by taking each segment as small as an atom <aṇu> [infinitesimal]. Here, if it 

<namely, the bhujā or the radius> is divided into parārdha [a variable] <a very large number> 

parts [n large], to the bhujā obtained by multiplying by parārdha add one part in parārdha and 

multiply by the radius and divide by 2, and then divide by parārdha [a variable]. For, the result 

will practically be the square of the radius divided by two. In order that the number might be full, 

it is divided by parārdha. Thus, if the segments are small, only one small segment shall have to 

be added to get the summation. Hence, not adding anything to <the units in> the bhujā, if it is 

multiplied by the radius and divided by 2 it will be bhujā-saṅkalita when it has been divided into 

extremely small segments. Thus, the square of the radius divided by 2 will be the saṅkalita when 

the segment <bhujā -khaṇḍa into which the bhujā or the side of the square is divided> is very 

small. [For large 𝑛 , 
𝑛(𝑛+1)

2
≈

𝑛2

2
. In the previous circle figure see, the lower right square: 

   ] 

_________________________________________________ 

 Jyeṣṭhadeva continues his work on the summations in the Yuktibhāṣā with expansions on 

the summation of squares, then a work on summations of third and fourth powers, and finishes 

the section with an invaluable proof on the general principle of summations 1𝑘 + ⋯ + 𝑛𝑘  which 

in Sanskrit is Samaghata-sankalita.  

_________________________________________________ 
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6.4.2 Varga-saṅkalita: Summation of squares [12, pp. 62-64] 

Now is explained the summation of squares <varga-saṅkalita >. 

[We suppose again, as above, “the radius to be the same number of units as the number of 

segments to which it has been divided.” So, radius = n units going forward.]  

Obviously, the squares of the bhujā-s, which are summed up above [the sum of natural numbers], 

are the bhujā-s each multiplied by itself [12, 22, … , (𝑛 − 2)2, (𝑛 − 1)2, 𝑛2]. Here, if the bhuja-s 

[1,2,   … ,  𝑛 ] which are all multipliers had all been equal to the radius [𝑛 ], their sum, <saṅkalita 

derived above>, multiplied by the radius would have been the summation of their squares  

[𝑛2 + ⋯ + 𝑛2 = (𝑛 + ⋯ + 𝑛) ⋅ 𝑛]. Here, however, only one multiplier happens to be equal to the 

radius, and that is the last one [𝑛 = 𝑟𝑎𝑑𝑖𝑢𝑠 ]. The one before that will have the number of 

segments one less than in the radius [𝑛 − 1 ]. <Hence> if that, <i.e., the second one>, is 

multiplied by the radius [(𝑛 − 1) ⋅ 𝑛], it would mean that one multiplied by the penultimate [next 

to last] bhujā [(𝑛 − 1) ⋅ 1] would have been the increase in the summation of the squares. Then 

<the segment> next below is the third [(𝑛 − 2) ⋅ 𝑛]. That will be less than the radius by two 

segments [𝑛 − 2 ]. If that is multiplied by the radius [(𝑛 − 2) ⋅ 𝑛], it will mean that, the 

summation of the squares will increase by the product of the bhujā by two <segments>  

[(𝑛 − 2) ⋅ 2]. 

[If the correct summation of the squares  

12 + 22 + ⋯ + (𝑛 − 2)2 + (𝑛 − 1)2 + 𝑛2 

was replaced by the larger sum 

[1 + 2 + ⋯ + (𝑛 − 2) + (𝑛 − 1) + 𝑛] ⋅ 𝑛, 

the increase in the penultimate term would be  

(𝑛 − 1) ⋅ 𝑛 − (𝑛 − 1)2 = (𝑛 − 1)(𝑛 − (𝑛 − 1)) = (𝑛 − 1) ⋅ 1 

= “one multiplied by the penultimate bhujā”. 
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The increase in the “next below term” would be 

(𝑛 − 2) ⋅ 𝑛 − (𝑛 − 2)2 = (𝑛 − 2)(𝑛 − (𝑛 − 2)) = (𝑛 − 2) ⋅ 2 

= “product of the bhujā [𝑛 − 2] by (two) segments.”] 

 In this manner, the summation in which the multiplication is done by the radius [𝑛 ] <instead of 

the bhujā-s> would be larger than the summation of squares by terms which involve the 

successively smaller bhujā-s multiplied by successively higher numbers. If <all these additions> 

are duly subtracted from the summation where the radius is used as the multiplier, the summation 

of the squares <varga- saṅkalita> will result.  

[[1 + 2 + ⋯ + (𝑛 − 2) + (𝑛 − 1) + 𝑛] ⋅ 𝑛 

−(𝑛 − 1) ⋅ 1 − (𝑛 − 2) ⋅ 2 − ⋯ − 2 ⋅ (𝑛 − 1) − 1 ⋅ (𝑛 − 1) 

= [1 + 2 + ⋯ + (𝑛 − 2) + (𝑛 − 1) + 𝑛] ⋅ 𝑛 − [(𝑛 − 1) ⋅ 𝑛 − (𝑛 − 1)2] 

−[(𝑛 − 2) ⋅ 𝑛 − (𝑛 − 2)2] − ⋯ − [2 ⋅ 𝑛 − 22] − [1 ⋅ 𝑛 − 12] 

= 𝑛2 + (𝑛 − 1)2 + (𝑛 − 2)2 + ⋯ + 22 + 12.] 

[The modern formula is 12 + ⋯ + 𝑛2 =
1

6
(𝑛)(𝑛 + 1)(2𝑛 + 1), which for large 

𝑛 approximates to 
1

6
(𝑛)(𝑛)(2𝑛) =

1

3
𝑛3.] 

… 

6.4.4 Samaghāta-saṅkalita: General principle of summation [12, pp.65-67] 

Now, the square of the square <of a number> is multiplied by itself [(𝑛2)2 ⋅ 𝑛  =  𝑛5], it is called 

sama-pañca-ghāta <number multiplied by itself five times>. The successive higher order 

summations are called sama-pañcādi-ghāta-saṅkalita <and will be the summations of powers of 

five and above>. Among them if the summation < saṅkalita> of powers of some order is 

multiplied by the radius, then the product is the summation of summations <saṅkalita -saṅkalita 
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> of the <powers of the> multiplicand <of the given order>, together with the summation of 

powers <sama-ghāta- saṅkalita> of the next order.  

[For radius = 𝑛  and order = 5, so “next order” = 6, since 

(𝑛 − 1)5 ⋅ 𝑛  =  (𝑛 − 1)5 ⋅ [(𝑛 − 1) + 1]  =  (𝑛 − 1)6 + 1 ⋅ (𝑛 − 1)5 

(𝑛 − 2)5 ⋅ 𝑛 = (𝑛 − 2)5 ⋅ [(𝑛 − 2) + 2] = (𝑛 − 2)6 + 2 ⋅ (𝑛 − 1)5 

⋯   

25 ⋅ 𝑛 = 25 ⋅ [2 + (𝑛 − 2)] = 26 + (𝑛 − 2) ⋅ 25 

15 ⋅ 𝑛 = 15 ⋅ [1 + (𝑛 − 1)] = 16 + (𝑛 − 1) ⋅ 15 

we see that, adding vertically, 

(15 + 25 + ⋯ + (𝑛 − 1)5 + 𝑛5) ⋅ 𝑛 

= [16 + 26 + ⋯ + 𝑛6]1 ⋅ (𝑛 − 1)5 + 2 ⋅ (𝑛 − 2)5 + ⋯ + (𝑛 − 2) ⋅ 25 + (𝑛 − 1) ⋅ 15 

= [16 + 26 + ⋯ + 𝑛6] + (𝑛 − 1)5 + (𝑛 − 2)5 + ⋯ + 25 + 15 

     +(𝑛 − 2)5 + ⋯ + 25 + 15 

      ⋯   

    +25 + 15 

              +15.] 

Hence, to derive the [approximate] summation of the successive higher powers: Multiply each 

summation by the radius. Divide it by the next higher number [power] and subtract the result 

from the summation got before. The result will be the required summation to the higher order.  

[The example above gives 

16 + ⋯ + 𝑛6 = [15 + ⋯ + 𝑛5] ⋅ 𝑛 − [15 + ⋯ + (𝑛 − 1)5] 

−[15 + ⋯ + (𝑛 − 2)5] 

⋯ 

−[15 + 25] 
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−15. 

Recalling the approximation 1 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
≈

𝑛2

2
 for large n generalized to  

1𝑚 + ⋯ + 𝑛𝑚 ≈
𝑛𝑚+1

𝑚+1
, we have here the approximation  

1𝑘+1 + ⋯ + 𝑛𝑘+1 ≈ [
𝑛𝑘+1

𝑘 + 1
] ⋅ 𝑛 − [

(𝑛 − 1)𝑘+1

𝑘 + 1
+

(𝑛 − 2)𝑘+1

𝑘 + 1
+ ⋯ +

2𝑘+1

𝑘 + 1
+

1𝑘+1

𝑘 + 1
] 

≈
1

𝑘 + 1
⋅ [𝑛𝑘+2 −

(𝑛 − 1)𝑘+2

𝑘 + 2
] 

≈
1

𝑘 + 1
⋅

1

𝑘 + 2
⋅ [(𝑘 + 2) ⋅ 𝑛𝑘+2 − 𝑛𝑘+2] 

=
1

𝑘 + 1
⋅

1

𝑘 + 2
⋅ (𝑘 + 1) ⋅ 𝑛𝑘+2 

=
𝑛𝑘+2

𝑘+2
 as desired.] 

Thus, divide by two the square of the radius. If it is the cube of the radius, divide by three. If it is 

the radius raised to the power of four, divide by four. If it is <the radius> raised to the power of 

five, divide by five. In this manner, for powers rising one by one, divide by numbers increasing 

one by one. The result will be, in order, the [approximate] summations of powers of numbers 

<sama-ghāta-saṅkalita >. Here, the basic summation is obtained from the square, the summation 

of squares from the cube, the summation of the cubes from the square of the square. In this 

manner, if the numbers are multiplied by themselves a certain number of times <i.e, raised to a 

certain degree> and divided by the same number, that will be the summation of the order one 

below that. Thus <has been stated> the method of deriving the summations of <natural> 

numbers, <their> squares etc. [1 + ⋯ + 𝑛 ≈
𝑛2

2
, 12 + ⋯ + 𝑛2 ≈

𝑛3

3
, 13 + ⋯ + 𝑛3 ≈

𝑛4

4
, … ] 

_________________________________________________ 

“Now [in 2010], regarding the notion of proof and reasoning, it may be noted that Kerala 

mathematicians placed considerable emphasis on providing an elaborate exposition of 
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various results, by discussing their reasoning, supported by several numerical illustrations 

and various kinds of proofs in algebraic and geometrical backgrounds that were necessary 

for the benefit of all kinds of students. Their exposition often started from the elementary 

level and was presented in an instructive form that could be easily followed and 

understood by all.” [17, p. 162]  

These yukti-s from the Yuktibhāṣā allow a thought-provoking window into the Nila 

school and the culture in India that surrounded it. Jyeṣṭhadeva and his predecessors cared for 

mathematics that impacted daily life, such as trigonometry to help define the movements of 

celestial bodies and their importance in religion, but also emphasized on that which was 

theoretical and did not pertain to necessary actions made by ordinary people, such as the 

summation of series outlined above. The callous view western scholars adopted regarding 

mathematics from India was unfounded, growing from preconceived notions and a lack of 

material to ingest. The scenery has changed. With reliable translations published and fresh 

interest in the field the assumptive attitudes of the west regarding mathematics from India will 

continue to change.  
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