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From Egypt and Greece in ancient times to Iran during the Middle Ages and Italy during 

the Renaissance, geometry and cubic equations have long fascinated mathematicians all around 

the world. A cubic equation with the unknown value x has the general form  

𝑎𝑥3 +  𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0, 

where a, b, c, and d are constants. Someone who was also fascinated with geometry and cubic 

equations was the French mathematician François Viète. Through a deeper look at ancient Greek 

mathematics coupled with his self-invented “analytic art,” Viète developed methods of trisecting 

an angle, solving a special type of cubic equation, and inscribing a heptagon in a circle. 

François Viète was born in 1540 in Fontenay-le-Comte, Poitou (now Vendee), France, 

and died in Paris, France, in 1603. The son of a lawyer, Viète graduated himself with a law 

degree from the University of Poitiers in 1560 [1, par 1]. He then worked as a lawyer for four 

years, during which his “practice appears to have flourished” [4, p. 1], before switching careers 

to serve as educator and councilor for various members of the French aristocracy and royalty 

including Antoinette d'Aubeterre, King Charles IX, King Henry III, and King Henry IV during a 

time of great political and social unrest in France [1, par 2-6]. Overall, Viète was known for his 

good character, tact, and contemplative, problem-solving mind [2, par 2-5]. 

 Despite never actually being a professional mathematician or scientist by trade, during 

his time working for the aristocracy and royalty, Viète achieved much in mathematics, including 

a new algebraic notation system, new revelations in geometry by taking a closer look at ancient 

Greek geometry, and improvements in the theory of equations [1, par 9-14]. He is sometimes 

even called the “father of algebra” [1, par 18]. Likewise, among other things, during his time 

serving Henry IV, Viète used his mathematical abilities to decode messages for the king that 

were being sent to Phillip II of Spain—the enemy of Henry IV [1, par 8]. 
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 Here, we will examine three pieces of Viète’s mathematical work from his book 

Supplementum Geometria (A Supplement to Geometry) [4]. Published in 1593 and contained in 

the Analytic Art, a larger volume translated by T. Richard Witmer in 1983 that contains other 

works on algebra, geometry, and trigonometry by Viète, A Supplement to Geometry contains 

twenty-five propositions and proofs on geometry. Initially, many of these propositions appear to 

just show geometry that is similar to that done by the ancient Greeks. But Viète’s genius lies in 

his using the geometry coupled with algebra and trigonometry to develop solutions to other 

mathematical problems.  

Even while developing new algebraic methods, Viète felt it was important to stay true to 

the geometry of the ancient Greeks. According to mathematics professors Victor Katz and Karen 

Hunger Parshall in Taming the Unknown: A History of Algebra from Antiquity to the Early 

Twentieth Century [3], throughout his work, Viète “insisted on grounding his algebra 

philosophically in geometrical strictures that had persisted since at least the time of Euclid, 

geometrical strictures that, viewed through our modern, post-Cartesian eyes, clearly mark Viète 

as an algebraist very much rooted in the sixteenth century” [3 p. 240]. This geometry is not 

surprisingly present throughout much of Viète’s Supplementum Geometria. 

Three such problems that Viète solves in Supplementum Geometria are trisecting an 

angle, finding a solution to a special type of cubic equation, and inscribing a heptagon in a circle 

[4, pp. 398-415]. The first and the latter problems use and expand on geometric methods that had 

already been around since ancient times. Likewise, for the second problem, historically, much 

had already been learned in solving various types of cubic equations. Notably, Archimedes, in 

ancient Greece, found the solution to a particular cubic equation using geometry and conic 

sections, and Omar Al-Khayyami found geometric and algebraic solutions for solving a so-called 
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depressed cubic in Persia during the middle ages [3, pp. 165-166]. Then in Italy 1539, Cardono 

found a formula for solving a depressed cubic [3, p. 216]. (By the simple substitution 𝑦 = 𝑥 −

𝑏

3𝑎
, the general cubic 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0 is reduced to a cubic equation without the 𝑥2 

term, creating a cubic equation called a depressed cubic: 𝑎𝑦3 +  𝑏𝑦 + 𝑐 = 0.) Likewise, during 

the late 1500’s, Viète took a closer look at mathematical works by the ancient Greeks [3, pp. 

240], and with that he developed another solution to a particular type of cubic equation, along 

with solutions to trisecting an angle and inscribing a heptagon in a circle as mentioned. 

In Proposition IX, Viète illustrates a method of trisecting an angle. This is the same 

proposition and proof Archimedes used to trisect an angle using a marked straight edge in 

ancient Greece. According to Viète, trisecting an angle is a key method for solving cubic 

equations. In fact, he says that “all cubic… equations, however affected, that are not otherwise 

solvable can be explained in terms of two problems—one the discovery of two means between 

given <extremes>, the other the sectioning of [trisecting] a given angle into three equal parts.” In 

Viète’s own words, “this is very worth noting” [4, p. 417].  

As such, Viète’s construction in trisecting an angle in Proposition IX may have suggested 

to him a method for solving a special type of cubic, which is illustrated in Proposition XVI. The 

special type of cubic equation that Viète solves is a cubic of the form 

𝑥3 − 3𝑥 =  1. 

Further, in Proposition XXIV, Viète walks the reader through two different methods of 

proving a single proposition—inscribing a regular heptagon (seven sides) in a given circle. Both 

proofs use geometry to find the solution, and both have interesting features.  
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Note that all comments in [square brackets] are mine, all comments in <angle brackets> are 

from the translator, and terms that are not enclosed with parentheses but are listed to a power, 

such as 𝐴𝐵2, should be interpreted as (𝐴𝐵)2. Further, not all pictures are to scale. 

 

Proposition IX [4, p. 398] 

 

To trisect a given angle. 

            

 

[Construction] 

      Let A be the angle to be constructed. 

     From the center B describe a circle at any distance you choose, and let 

the diameter be CBD.  

 

 

Mark off the arc DE which defines the size of the given angle [so angle A is 

congruent to angle EBD] and extend DBC indefinitely. 
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Draw the straight line EFG [in fact, either EGF (left sketch) or FEG (right sketch)] 

cutting the extended diameter at F and the circumference at G so that FG is 

equal to BC or BD, the radius of the circle [using a straight edge marked with distance 

FG = BC = BD]. 

               
 

[Claim] 

 I say that the angle EFC is one-third the angle EBD, that is, the given angle 

A, and that the arc GC is one-third the amplitude <of the arc ED>. 

 

          
 
[Proof of Claim] 

 Let G <and> B be joined. Then the triangle FGB is isosceles [because 

GB = FG].  
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From B, one end of its [the triangle FGB’s] base, draw BE equal [as another radius] 

to the leg BG.  

    

 

Hence 

[The translator calls this a “long leap.” Observe, for the acute angle: 

(1) By the first part of Euclid I-32, on triangle BGF, the exterior angle BGE equals 

the sum of the two interior and opposite angles, BFG and FBE, namely BGE = 

BFG + FBG = 2BFG. 

 

(2) Because triangle BGE is isosceles, we see that 2BFG = BGE = BEG. 

 

(3) By the second part of Euclid I-32, the sum of the interior angles of a triangle is 

two right triangles. So, GBE = two right angles (in triangle GBE) – BGE – BEG 
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= two right angles (in triangle GBE) – 2BFG – 2BFG 

= two right angles (in triangle GBE) – 4BFG 

= two right angles (in triangle GBE) – 4GBF. 

(4) Also, GBD = two right angles (upon semicircle) –  GBF. 

(5) Therefore, EBD = two right angles – GBF – GBE 

    = two right angles – GBF – (two right angles - 4GBF)  

       = 3GBF. 

 

 

Observe, for the obtuse angle: 

 

EBD = GFB + FEB 

= GFB + (FGB + GBE) 

= GFB + GEB + (GBF - FBE) 

= 2GFB + GEB – FBE 

= 2GFB + GFB 

= 3GFB. 

So, EBD = 3GFB, as desired.] 

 

the angle EBD is triple the angle GBF or GFB.  

     

 

Moreover, the arc GC defines the size of the angle GBF. Accordingly, within 

the arc DE mark off the arcs DH and HI equal to the arc CG [using a compass 

marked with angle CG] and draw the straight lies BH and BI.  

 

    
 

Therefore the angle EBD—that is, the given <angle> A—is trisected by the 

straight lines BH and BI, which is what was to be done. 
 

[End of Proof] 
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As mentioned, the final construction that appears in Proposition IX seems to possibly 

have suggested the initial construction Viète uses for the following proposition.  

 

 

Proposition XVI [4, pp. 403-405] 

[Theorem] 

If there are two individual isosceles triangles and the legs of 

one [triangle]  are equal [congruent] to those of the other 

[triangle] and the base angle of the second [triangle] is equal 

[congruent] to three times the base angle of the first [triangle], 

[then] the cube of the base of the first [triangle] minus three 

times the product of the base of the first [triangle] and the 

square of the common leg is equal to the product of the base 

of the second [triangle] and the square of the same leg.  

 

       

 

[Claim:   𝐴3 − 3𝐴𝑍2 =  𝐶𝑍2] 

 

   [Construction] 

Let the first [isosceles] triangle be ABC having equal legs AB and BC. 

 

Since the second triangle is also isosceles [by assumption] and either of the 

[congruent] base angles of this second triangle is three times the angle BAC 

or BCA and [each of the congruent base angles of the second triangle] is necessarily 

less than a right angle [By the second part of Euclid I-32, the total angle sum of a 
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triangle is equal to two right angles.], therefore either of the angles [base] BAC and 

BCA [in our first triangle] is less than one-third of a right angle and the angle 

ABC is [necessarily] greater than a right angle.  

 
[In the first triangle,  

 

𝐴𝐵𝐶 +
1

3
 𝑟𝑖𝑔ℎ𝑡 𝑎𝑛𝑔𝑙𝑒 +

1

3
 𝑟𝑖𝑔ℎ𝑡 𝑎𝑛𝑔𝑙𝑒 > 𝐴𝐵𝐶 + 𝐵𝐴𝐶 + 𝐵𝐶𝐴 = 2 𝑟𝑖𝑔ℎ𝑡 𝑎𝑛𝑔𝑙𝑒𝑠.  

So, 𝐴𝐵𝐶 >
4

3
 𝑟𝑖𝑔ℎ𝑡 𝑎𝑛𝑔𝑙𝑒 > 1 𝑟𝑖𝑔ℎ𝑡 𝑎𝑛𝑔𝑙𝑒. ] 

 

Let AB and AC be extended [to unspecified points D and E].  

 

From C to AB extended, draw CD [D is now specified] equal to AB. Then from 

D to AC extended draw DE [E is now specified] also equal to AB. So there are 

two isosceles triangles, ABC and CDE.  

 

But CD and DE, the legs of the second triangle are equal to AB and BC, the 

equal legs of the first triangle [all are congruent]. Moreover, just as either of 

the angles BAC and BCA is one part of two right angles, so the angle ABC 

<is equal to> two right angles minus those two parts [by the second part of 

Euclid I-32], and the exterior angle of the angle [triangle] ABC <is equal to> 

those two parts [by the first part of Euclid I-32].  

 
The angle ADC is [also] equal to this exterior angle, since the angles DBC 

and CDB are equal on account of the equality of the legs CD and CB 
[Triangle BDC is isosceles. So, by Euclid I-5, “the angles at the base equal one another.”] 
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The angle exterior to the angle [triangle] DCA, moreover, is the sum of the 

angles ADC and DAC [again, by Euclid I-32]. Thus the second triangle [as 

mentioned in the statement of the proposition] is CDE, which is isosceles and has 

legs equal to the legs of ABC, the first triangle [as mentioned in the statement of 

the proposition], and either of its base angles, namely DCE or DEC, is three 

times the angle BAC or BCA. 

 

 

[Proof] 

I say, then, that  

 

𝐴𝐶3 − 3(𝐴𝐶 × 𝐴𝐵2) =  (𝐶𝐸 × 𝐷𝐶2) 𝑜𝑟 (𝐶𝐸 × 𝐴𝐵2). 
 

         [The “or” statement follows since 𝐷𝐶 = 𝐴𝐵 by construction.] 

[Further Construction]  

For let a circle be described at the distance CB or CD from C, its 

center, and let the diameter FCG cut AE perpendicularly at C and AD [not 

perpendicularly] at H. Let BI and DK be drawn parallel to FG, cutting AE 

perpendicularly at I and K.  

 



12 

Hence AI and IC are equal [triangle ABC is isosceles] and AC is twice AI [for 

later use, 𝐴𝐶 = 2(𝐼𝐶)]. So also AB and BH are equal, making AH twice AB. 

Likewise CK and KE are equal, making CE twice CK. 

 
[Proof of Claim] 

Moreover, 𝐶𝐺2 (that is, 𝐴𝐵2) is equal to 𝐶𝐻2 + (FH × HG)  

 

[Observe:             𝐶𝐺 = 𝐶𝐻 + 𝐹𝐻 

So,     𝐶𝐺2 =  (𝐶𝐻 +  𝐹𝐻)2 

=  𝐶𝐻2 + 𝐹𝐻2 + 2(𝐶𝐻)(𝐹𝐻) 

          =  𝐶𝐻2 + 𝐹𝐻(𝐶𝐻 + 𝐶𝐻 + 𝐹𝐻) 

   =  𝐶𝐻2 + 𝐹𝐻(CH + CG). 

    = 𝐶𝐻2 + (FH × HG).] 

and, by conversion, 𝐴𝐵2 −  𝐶𝐻2 is equal to FH × HG  

[Meaning, from above: 

𝐶𝐺2 =  𝐶𝐻2 + (𝐹𝐻 × 𝐻𝐺) 

𝐴𝐵2 =  𝐶𝐻2 + (𝐹𝐻 × 𝐻𝐺) 

𝐴𝐵2 −  𝐶𝐻2 = 𝐹𝐻 × 𝐻𝐺.] 

(that is, to BH × HD). 

[By Euclid III-35, “if in a circle two straight lines [line FG and BD] cut one 

another, then the [area of the] rectangle [FH × HG] contained by the segments 

of the one equals [area of the] the rectangle [BH × HD] contained by the 

segments of the other.” So, 𝐴𝐵2 − 𝐶𝐻2 = 𝐵𝐻 × 𝐻𝐷.] 

 

Furthermore, [by the Pythagorean Theorem]  𝐶𝐻2 is equal to 𝐴𝐻2 −  𝐴𝐶2 and 

𝐴𝐻2 is 4𝐴𝐵2[because 𝐴𝐻 = 2𝐴𝐵].  
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Hence 

𝐴𝐶2 −  3𝐴𝐵2 = 𝐵𝐻 × HD. 

                             [First by algebra, then using the equalities above, observe:   

 𝐴𝐶2 −  3𝐴𝐵2 =  𝐴𝐵2 − (4𝐴𝐵2 − 𝐴𝐶2)  

   =  𝐴𝐵2 − (𝐴𝐻2 −  𝐴𝐶2) 

   =  𝐴𝐵2 − 𝐶𝐻2 

   = 𝐵𝐻 ×  𝐻𝐷.] 

But [by similar triangles] 

BH : HD = IC : CK 

[
𝐵𝐻

𝐻𝐷
=  

𝐼𝐶

𝐶𝐾
 from  

 

] 

and 

IC : CK = AC : CE, 

since the latter terms are twice the former  

 

[
𝐼𝐶

𝐶𝐾
=  

2(𝐼𝐶)

2(𝐶𝐾)
=  

𝐴𝐶

𝐶𝐸
].  

Hence 

AC : CE = BH : HD 

[
𝐴𝐶

𝐶𝐸
=  

𝐵𝐻

𝐻𝐷
] 
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and consequently AC is to CE as 𝐵𝐻2 (i.e., 𝐴𝐵2) is to BH × HD—i.e., 

to 𝐴𝐶2− 3𝐴𝐵2  

[
𝐴𝐶

𝐶𝐸
=  

𝐵𝐻

𝐻𝐷
=  

𝐵𝐻2

𝐵𝐻 ×𝐻𝐷
=  

𝐴𝐵2

𝐵𝐻 ×𝐻𝐷
=  

𝐴𝐵2

𝐴𝐶2− 3𝐴𝐵2
].  

 

Thus, resolving this proportion 

[by cross multiplying the equation  
𝐴𝐶

𝐶𝐸
=  

𝐴𝐵2

𝐴𝐶2− 3𝐴𝐵2
],  

 𝐴𝐶3 − 3(𝐴𝐶 × 𝐴𝐵2) = 𝐶𝐸 × 𝐴𝐵2, 

as was to be demonstrated. 

[End of Proof] 

 

[Special Case of the Proposition] 

Assuming that Z is any side of an equilateral triangle and that, therefore, each 

of the angles is one-third of two right angles [
1

3
 ×  180° = 60°], 

 

 

𝐴3 − 3𝑍2𝐴 =  𝑍3, 

         [where “A” = AC, “Z” = AB, and “Z” = CE.] 

thus making A the base of an isosceles triangle the base angle of which is one-

ninth of two right angles [
1

9
 ×  180° = 20°], 

 

[Specific Example of That Special Case] 

Let Z be 1 and A [be] x. <Then> [𝐴3 − 3𝑍2𝐴 =  𝑍3 becomes] 

𝑥3 − 3𝑥 =  1. 

If Z is 100,000,000, these are the triangles: 
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[The equation to be solved here is 𝐴3 − 3(100,000,000)2𝐴 = (100,000,000)3, with the 

assumptions that A is the base of an isosceles triangle with base angles of 20°, and 

100,000,000 is the length of each leg of the triangle. It can be solved for A using 

trigonometry as follows: 

For convenience, let the height of the isosceles triangle be y, and half the base of the 

isosceles triangle be x. Then, with the assumptions as stated above, the triangle is as 

follows: 

 

So, sin 20° =
𝑦

100,000,000
  . 

 𝑦 ≈ 34,202,014. 

Likewise, cos 20° =
𝑥

100,000,000
 . 

So, 𝑥 ≈ 93,969,262. 

Thus, the base 𝐴 = 2 × 93,969,262, 

meaning 𝐴 =  187,938,524. 

So, the approximate positive real decimal solution to  

𝑥3 − 3𝑥 = 1 
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is 
187,938,524

100,000,000
= 1.87938524.] 

 

This method can be generalized to solve any cubic equation with the form            

𝐴3 − 3𝑍2𝐴 =  𝑍3, where A is the base of an isosceles triangle with sides lengths Z, 

and the base angles of the triangle are 20°.] 

 

 Just as he did in Proposition XVI, Viète also uses geometry in the following proposition. 

Here, Viète illustrates two different methods of proving that a circle (or 360 degrees) can be 

divided into seven equal parts. Then he uses this fact to show that any angle can be divided into 

seven equal parts. 

 

 

Proposition XXIV [4, pp. 413-415] 

 

To inscribe an equilateral and equiangular heptagon [seven-

sided regular polygon] in a given circle. 

 

[Construction] 

Let the given circle have A as its center and BAC as its diameter.  

𝑦 = 1 

≈ 1.87 

𝑦 = 𝑥3 − 3𝑥 
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An equilateral and equiangular heptagon is to be inscribed in it. 

        Extend the diameter, CB, to D so that  

 

𝐷𝐵 ∶  𝐷𝐴 =  𝐴𝐵2 ∶   𝐷𝐶2 

[ 
𝐷𝐵

𝐷𝐴
=  

𝐴𝐵2

𝐷𝐶2.  

This is possible by Proposition XIX.] 
 

and draw DE across the circumference equal to the radius [DE = AB].   

 

 
 

 
 [Claim] 

 

I say that [arc] EB is the arc of a heptagon, that is, one-seventh of the 

whole circumference. 

 
[Proof # 1]  

       Let DE cut the circle at F and connect the radii AE and AF [so, DE = 

AB = AE = AF].  
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The triangle DEA, therefore, is isosceles  

 

 
 

and is so constituted that the difference between the base and the leg 

[DA – DE] is to the base [DA] as the square of the leg [𝐷𝐸2] is to the 

square of the sum of the leg and the base [(𝐷𝐸 + 𝐷𝐴)2].  

 

[Since 
𝐷𝐵

𝐷𝐴
=  

𝐴𝐵2

𝐷𝐶2, and 𝐴𝐵 = 𝐷𝐸 = 𝐴𝐶, 

 
𝐷𝐴 − 𝐷𝐸

𝐷𝐴
=  

𝐷𝐵

𝐷𝐴
=  

𝐴𝐵2

𝐷𝐶2
=  

𝐷𝐸2

(𝐴𝐶 + 𝐷𝐴)2
=  

𝐷𝐸2

(𝐷𝐸 + 𝐷𝐴)2
 . ] 

 

Hence the straight line [segment] AF, which [as a radius] is equal to the 

leg, bisects [by Proposition XXI] the base angle [A] and, therefore, just as 

its two right angles [of diameter BAC] have [can be divided into] seven [equal] 

parts, so the angle EAD [having been bisected by AF] has two [of those seven 

parts]  

 
[By Proposition XXII, since in triangle EAF,  

angle AEF = angle AFE = 3 × (angle EAF),  

then the angle sum of triangle EAF is 180° = 7 × (angle EAF). 

So, angle EAF = 
1

7
 × 180°. Hence, angle EAD = 2 (angle EAF) = 

2

7
 × 180°.] 

and, as the four right angles—that is, the whole circumference—have 

[can be likewise divided into] seven [equal] parts [each of which is double a 

seventh part of angle EAD], so the angle EAD has one [of those double-sized 
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seven parts]. But the amplitude of this angle, EAD, defines the arc EB. It 

[therefore] subtends one-seventh <of the whole>.  

 

So the arc EB is one-seventh of the whole circumference and seven 

times this subtends <the whole>. Hence there has been inscribed in the 

given circle an equilateral and equiangular [regular] heptagon, which is 

what was to be done. 

 
[End of Proof # 1] 

 

 

Alternatively 

 

To inscribe an equilateral and equiangular [regular] 

heptagon in a given circle. 

 
[Construction] 

       Let the given circle be ABCDEFG [labels to be specified later]. An 

equilateral and equiangular heptagon is to be inscribed in ABCDEFG. 

 
[Proof # 2] 
 

     Construct an isosceles triangle, HIK, having the angles at I and K 

three times the remaining angle at H.  

 

 
 

 

Inscribe in the circle ABCDEFGH [A = H] a [similar] triangle with the 

same angles as HIK [By Euclid IV-5, “about a given triangle to circumscribe a 

circle”]. Let this be ADE and such that the angle DAE is equal to the 

angle at H and that ADE and AED are equal to those at I and K.  
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Either ADE or AED, therefore, is triple the angle DAE [by construction]. 

Hence either the arc AD or the arc AE will be triple the arc DE and one-

third of the arc AD or AE will be equal to the arc DE. Let these thirds 

be AB, BC, CD, AG, GF, and FE and <draw the chords that> subtend 

<them>.  

 

 
 

Hence, as was required, an equilateral and equiangular [regular] 

heptagon has been inscribed in a given circle.  

 
[End of Proof # 2] 

 
 

 So, it seems that following Proposition XXIV allows one to divide any circle into seven 

equal parts. Hence, any angle can be divided into seven equal parts, which is exactly what Viète 

does in the following example. 

 
[Example Using Proposition XXIV] 

 

       Assume a hypotenuse of 100,000,000 and a right angle with [divided 

into] seven parts [
90

7
 degrees]. The [three possible] right triangles having 

seven <parts> will be these: 
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 Using the three right triangles  above, Viète then goes on to develop and solve another 

cubic equation, which is not illustrated here. 

 In conclusion, François Viète had a fascinating life, and he created a lot of mathematics. 

His efforts helped not only to expand the mathematical ideas and methodologies of his day but 

also to pave the way for further advancements in solving algebraic equations and improving 

analytic geometry. In sum, Viète was an exceptional mathematician with an exceptional mind, 

and an exceptional body of work. 
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