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From the year 160 to the 1700’s, multiple proofs and experiments were produced to 

demonstrate the same law of refraction. Considering the boundary between two different 

materials, such as air and water, light will pass through the first material along a given path, and 

then bend, known as refraction, once it reaches this boundary. The direction the light will bend 

depends on the relation between the two media. Although many scholars took different 

approaches, the foundation of each approach was to show a relationship between the sine of the 

two angles of refraction and the two media through which the light is passing. Many works and 

notes on the subject are lost, damaged, or unable to be translated, but the pieces that remain give 

significant insight as to how the law of refraction can be shown. Over time, the clarity of what is 

now known as Snell’s Law has improved, which can be credited to the work of several 

mathematicians throughout history.  

Today, Snell’s Law is written as  
𝑛1

𝑛2
=

sin 𝑎2

sin 𝑎1
, where 𝛼1, 𝛼2 are the angles of incidence 

measured from the normal to the boundary between the media, and n1, n2 are the indices of 

refraction of the two media [2].   
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The indices of refraction will depend on the medium through which light is refracting, 

and are defined as the ratio of the speed of light in a vacuum, c, to the speed of light, vi, through 

the ith medium, meaning each index 𝑛𝑖 =  
𝑐

𝑣𝑖
. It is known from experiment that light will bend 

towards the normal when light enters a denser medium, and will bend away from the normal 

when light leaves a denser medium [2]. 

Ptolemy 

Ptolemy, living in Alexandria from 100 A.D to around 175 A.D produced ground 

breaking proofs and experiments in optics around the year 160. Very little is known of Ptolemy’s 

life or the potential influences on his work, though Euclid’s Elements are likely a direct influence 

for Ptolemy’s use of geometry [7]. It is clear, however, that Ptolemy’s work served as a 

foundation for further research and became a point of criticism for future mathematicians. All 

comments in square brackets below are mine. Comments in angle brackets are those of the 

translator. All additional sketches are mine. 

In The Fifth Book of Ptolemy’s Optics, Ptolemy states 
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“it has been claimed that this breaking [refraction] does not take place at equal angles; 

however, the angles <of incidence and refraction> do bear a certain consistent 

quantitative relation to one another with respect to the normals” [7].  

 

A series of experiments were performed by Ptolemy to obtain the data in Tables V.1-3. Ptolemy 

describes the set-up of the experiments as follows: 

“That this is clear and indubitable we can understand on its own terms by means of a coin 

that is placed in a vessel called a baptistir.  

 

For, if the eye remains fixed so that the visual ray passing over the lip of the vessel passes 

above the coin [so that the coin is not seen], 

 

[Figure of baptistir as described by Ptolemy:] 

  
and if water is then poured slowly into the vessel until the ray that passes over the edge of 

the vessel is refracted toward the interior to fall on the coin, then objects that were 

invisible before are seen along a straight line extended from the eye to a point higher than 

the true point <at which the coin lies>.  
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And it will be supposed not that the ray is refracted toward those lower objects but, 

rather, that the objects themselves are floating and are raised up to <meet> the ray. For 

this reason, such objects will be seen along the continuation of the <incident> visual ray, 

as well as [from above] along the normal dropped <from the visible object> to the water's 

surface-all according to the principles we have previously established.” 

 

Ptolemy was able to come to several conclusions from his experiments, which compare 

different materials for bending light and the different angles of refraction. Again, this is for 

Ptolemy’s Optics, Book V. 

<EXPERIMENT V.1>  

Let circle ABGD <in figure V.2> be described on that [vertical] plaque about centerpoint 

E, and let the two diameters AEG and BED intersect one another at right angles. Let each 

of the <resulting> quadrants be divided into 90 equal increments.  

 
 

At the centerpoint [E] let a small marker of some color or other be attached, and let the 

plaque be stood upright in the small vessel <discussed in the previous experiment>. Then 

let a suitable amount of water that is clear enough to be seen through be poured into that 

vessel, and let the graduated plaque be placed erect at right angles to the surface of the 

water. Let all of semicircle BGD of the plaque, but nothing beyond that, lie under water, 

so that diameter AEG is normal to the water's surface. From point A, let a given arc AZ be 

marked off on either of the two quadrants that lie above the water. Furthermore, let a 

small, colored marker be placed at Z.  
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Now, if we line up both markers at Z and E along a line of sight from either eye so that 

they appear to coincide, and if we then move a small, thin peg along the opposite arc GD 

under water until the end of the peg, which lies upon that opposite arc, appears to lie 

directly in line with the two previous markers, and if we mark off the portion of the arc 

GH that lies between G and the point [T] at which the object would appear unrefracted, 

the resulting arc [GH] will always turn out to be smaller than AZ [arc GH < arc GT = arc 

AZ]. Moreover, if we join lines ZE and EH, angle AEZ > angle GEH, which cannot be the 

case unless there is refraction -that is, unless ray ZE is refracted toward H according to 

the excess of one of the opposite angles over the other. 

 

 

 

 

 

 

[Figure V.2] 

 
Furthermore, if we place our line of sight along normal AE, we will find the image 

directly opposite along its rectilinear continuation, which will extend to G; and this 

<radial line> undergoes no refraction.  

 

In the case of all the remaining positions, when arc AZ is increased, arc GH in turn will 

be increased, and the refraction will be greater [see table below. Ptolemy gives a list of 

values, but note that he says “When AZ is 40 <degrees>, then GH will be 29” which 

differs from the value 28 in the table].  
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Ptolemy repeats the experiments for different combinations of air, water, and glass to 

obtain the tables of measures of angles of incidence and refraction in Tables V.2 and V.3.  

 

He goes farther to determine a more general relation between the rays, referring to the 

difference in mediums as rarer and denser (for example air is a rarer medium than water). He 

concludes in Experiment V.4 that a ray will be refracted either towards the normal when passing 

from a rarer to denser medium, or away from the normal when viewing from a denser medium 

into a rarer one. 

 

 <EXPERIMENT V.4> 

In fact, if we set up the plaque as before and assume that diameter BD <in figure V.7> 

lies on the interface between the two different media, and if we draw normal AEG as well 

as the refracted ray-couple ZEH inclined toward the normal, with which it forms angle 

GEH, then the path of refraction remains one and the same.  
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In fact, when the visual ray passes through point E, and the eye is stationed at point Z, the 

line <of sight> after refraction-i.e., line EK [extended straight from ZE] - inclines toward 

the normal according to its continued passage <along EH> while the visible object is seen 

along the rectilinear continuation <EK>.  

 
But if the eye lies at point H, and EZ lies within the rarer medium delimited by ABD, 

then, after refraction, line EL will take an opposite tack from that previously specified, 

inclining away from normal AE <along EZ> in such a way that it lies farther out <from 

the normal> than would the visual ray if it were to continue in a straight line.  

 

[Figure V.7] 
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Furthermore, when the media and the angles differ from one another by a significant 

amount, the difference <between the angles of incidence and refraction> increases as the 

density of either of the media grows.  

 

Indeed, if we assume that [upper semicircle] arc BAD lies in the rarer medium and [lower 

semicircle] arc BGD in the denser, and if we take angle AEZ as it is represented, then, 

when the medium within section BGD becomes denser than it previously was, the 

difference between <angle AEZ and> angle GEH will vary with the difference in density 

between the two media … 

 

So too, if we suppose that the refraction of another of the visual rays takes place at some 

other arcal distance <than AZ> from normal AE e.g., along ray-couple TEK-then AT: AZ 

> GK: HG [meaning  
𝐴𝑇

𝐴𝑍
>  

𝐺𝐾

𝐻𝐺
]. By alternation, AT: GK > AZ: GH [

𝐴𝑇

𝐺𝐾
>  

𝐴𝑍

𝐺𝐻
]. By 

separation,  

TZ : AZ > KH: GH.  

[ 
𝐴𝑇

𝐴𝑍
− 1 >  

𝐺𝐾

𝐺𝐻
− 1 

 

 
𝐴𝑇

𝐴𝑍
−

𝐴𝑍

𝐴𝑍
 >  

𝐺𝐾

𝐺𝐻
−

𝐺𝐻

𝐺𝐻
 

 

 
𝐴𝑇−𝐴𝑍

𝐴𝑍
 >  

𝐺𝐾−𝐺𝐻

𝐺𝐻
 

 

 
𝑇𝑍

𝐴𝑍
 >  

𝐾𝐻

𝐺𝐻
 ] 

 

And <by alternation,> TZ: KH > AZ: GH [
𝑇𝑍

𝐾𝐻
 >  

𝐴𝑍

𝐺𝐻
 ].  
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Furthermore, we can determine particular cases on the basis of the refractions as we 

measured them if we take the resultant numbers and, on their basis, investigate particular 

measurements of this sort, substituting the numbers so derived for the two arcs AZ and 

AT.  

 

Ptolemy’s experiments do not yield a universal law, and it is speculated that the 

inequality he discovered is the best he could have found [7]. So, with the given relationship, as 

the angle of incidence increases, the ratio increases as well, assuming that angle AEZ and GEH 

are constantly proportional. 

  

Ibn Sahl  

 After Ptolemy, the study of optics continued with Ibn Sahl in 984, who knew of 

Ptolemy’s work, but discovered a more universal relationship for refraction using ratios and the 

sine law [8]. 

[Ibn Sahl’s Demonstration of Refraction] 

 

<The hyperbola as a conic section: The law of refraction.  

Ibn Sahl first considers refraction on a plane surface. Defining GF as the plane surface of 

a piece of crystal of homogenous transparency, he emphasizes a relation that is the 

reciprocal of the refractive index n of this crystal in relation to air.> 

 

[Construction] 

[Let GF be the surface of a crystal with the air above the crystal.] 
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Let DC be a light ray in the crystal, which is refracted [at C, lying on GF] <Fig. 11; see 

also Fig. 1> in the air along CE [CE’].  

 
[Extend line segment CD to a ray past point C.] 

 
[Construct] the perpendicular [line GH] to the plane surface GF at G[, and] intersect line 

[ray] CD at H and the refracted ray at E.  [Extend line segment CE’ so that E lies on GH.] 
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<The ratio 
𝐶𝐸

𝐶𝐻
< 1, which Ibn Sahl uses throughout his study, is the reciprocal of [the 

refractive index of the crystal,] n [ 
1

𝑛
 ] > 

 

[Construct a line normal to line GF from C.] 

 

Let i1 and i2 be the angles formed by CD and CE, respectively, with the normal;  

 
 

we have  
𝐶𝐸

𝐶𝐻
=  

𝐶𝐸

𝐶𝐺
∙

𝐶𝐺

𝐶𝐻
=  

sin 𝑖1

sin 𝑖2
=  

1

𝑛
. 
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[Observe, 
𝐶𝐺

𝐶𝐻 
=  

opposite in ∆ CHG

hypotenuse ∆CHG
=  sin(∡ 𝐶𝐻𝐺) =  sin(𝑖1) 

 

 ∡ 𝐶𝐻𝐺 = 𝑖1 because CH is a transversal cutting two parallels 

 
 

and 
𝐶𝐺

𝐶𝐸
=  

opposite in ∆ 𝐶𝐸𝐺

hypotenuse ∆ 𝐶𝐸𝐺
=  sin(∡ 𝐶𝐸𝐺) =  sin(𝑖2) 

 

∡ 𝐶𝐸𝐺 =  𝑖2 because both add to ∡ 𝐸𝐶𝐺 to give 90o]. 

 
 

[where n refers to the index of refraction of the crystal in relation to air] 

 

Let I be a point on segment CH such that CI = CE, and let point J be the middle [the 

midpoint] of IH. We have 
𝐶𝐼

𝐶𝐻
=  

1

𝑛
. Therefore C, I, J, H characterize the crystal for any 

refraction.  
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[End of proof] 

 

Thomas Harriot 

 Throughout Thomas Harriot’s life (1560 – 1621), he kept manuscripts of new ideas and 

personal notes on various mathematical topics, but never published them while he was alive. 

Many still remain unpublished and most are inexplicable to the average reader. An early 

manuscript, dated July 1601 by Harriot himself, show use of the sine law, which appears to be an 

attempt to find the relationship of refraction [11]. Harriot’s manuscripts show that there were 

several drafts of his discovery of refraction, where the final draft shows significant alterations 

marked on the original document. His 1601 statement of refraction is as follows from his final 

draft: 

The eye and the visible point being in two transparent media, in themselves 

homogeneous, but between themselves differing in kind, and conjoined at a plane or 

spherical interface. 

  

Then, given (in position) a single incident ray together with its corresponding refracted 

ray, to specify, in position, the refracted ray corresponding to any other given incident 

ray, according to the laws of geometry. 

 

 The same being given in numbers (that is, a single angle of incidence and its 

corresponding angle of refraction), to express, also in numbers, the angle of refraction 

corresponding to another angle of incidence. 
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Another: the line from the eye (on one of those rays) to the visible object (on another) 

being given in position and magnitude, to find the point of refraction on the common 

surface at the boundaries of the media. [The final draft adds this clarification to show 

where the point of refraction is.] 

 

Another: Given two transparent media, in themselves homogeneous, but between 

themselves differing in kind, and conjoined at a plane or spherical interface; and given 

also two straight line[s] containing an angle, the complement of which with respect to 

two right angles does not exceed the greatest angle of refraction, to place geometrically 

the common surface of the media at the common intersection <of the two lines>, such 

that the eye, placed on one of the given lines, will see the other, along the same straight 

line. 

 

From his first draft, Harriot notices and comments that “the angles of refraction from 

water to crystal, or vice versa, smaller than those from air to water, when (according to the 

theory of weakness) the refraction ought to be larger.”  

Harriot concludes in a corollary a statement popular and consistent with the arguments 

proposed by previous mathematicians. 

Corollary: A ray, perpendicularly incident on a denser medium, is contracted [bent 

towards the normal]; on a rarer medium, is extended [bent away from the normal]. 

While Harriot does not expound, legibly, on the idea of different media, it is clear that he 

observed such differences as researchers before him. Harriot recorded his angles of incidence 

and refraction in a page of tables.  

 [First entries in the tables of incident angles, refracted angles, and the difference between 

incident and refractive angles, from air to water] 
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Willebrord Snellius 

 The work of Willebrord Snellius was not published during his lifetime, however the law 

of refraction is termed Snell’s Law, suggesting that Snellius was the one to discover it. It is clear 

that several mathematicians had a similar idea prior to the 1621 discovery by Snell. The original 

statement by Snell reads in translation: 

The real radius has to the apparent radius the same proportion in one and the same 

different medium. The secant of the complementary angle of the inclination in the rarer 

medium has the same ratio to the secant <of the complementary angle> of the broken 

<radius> in the denser medium, as the apparent radius has to the true or incident radius 

[1, 104-105]. 

 

This statement corresponds to a lemma using the construction of circles to determine the now 

known value for the index of refraction of the denser medium.  

<Reconstruction of the lemma [statement] before prop. 34 of Book I [of Snell] (with 

denser medium below).> 
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If eye point A, incidence point on boundary surface I and object point O are given, then 

draw a circle with radius R smaller than the distances between the three points around the 

incidence point.  

 
The connecting lines between A and I or O and I produce two points of intersection P and 

Q with the circle.  

 
From each of these [P and Q], the [line] perpendicular is dropped onto the boundary 

surface, and the distances SI and IT obtained then behave in the same way as the given 

ratio [
sin 𝛼

sin 𝛽
 ] <in modern notation> [3].  
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 [PI = IQ = radius of circle.  

  

 So, 
sin 𝛼

sin 𝛽
=  

(
𝑆𝐼

𝑃𝐼
)

(
𝐼𝑇

𝐼𝑄
)

=  
𝑆𝐼

𝐼𝑇
  .] 
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 [End of lemma statement] 

 

 Snell defined angle of incidence and angle of refraction with a series of relationships 

corresponding to geometric drawings.  Figure 8 shows the ray AB in air and the observed ray BD 

in water. A modern interpolation by scholars of sine tables shows 𝑛 =  
4

3
, which is the accepted 

index for water, even though Snell did not denote specific indices of refraction, like those used 

today [3]. 
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Observe the triangles EBC and EBD 

 

Snell used the relationship 

  
length of apparent ray

length of true ray
=  

𝐶𝐵

𝐷𝐵
=  

𝐶𝐵

𝐸𝐵
𝐷𝐵

𝐸𝐵

 =  
sec(angle 𝐸𝐵𝐶)

sec(angle 𝐸𝐵𝐷)
 to determine a general relationship 

for the angles of the apparent and true ray. 

 

 Modern Demonstration from Snell’s Given Figures and Ratios: 

Snell gives the following designations for angles 𝛼, 𝛼′, 𝛽, 𝛽′ where 

  𝛼 = 90o −  𝛼′ and 𝛽 = 90o −  𝛽′. 

 

So, figure 8 becomes: 
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So, 
𝐶𝐵

𝐷𝐵
=  

𝐶𝐵

𝐸𝐵
⋅

𝐸𝐵

𝐷𝐵
=  

1

cos 𝛼′  ∙  
cos 𝛽′

1
=  

sec 𝛼′

sec 𝛽′
  as claimed by Snell, where angle EBC = 𝛼′, and 

angle EBD = 𝛽′. 

Observe, that by the cofunction theorem in right triangles, 

  sin 𝛼 =  cos 𝛼′. 

Similarly, sin 𝛽 =  cos 𝛽′. 

Then, 
1

cos 𝛼′  ∙  
cos 𝛽′

1
=  

sin 𝛽

sin 𝛼
= 𝑛.  

However, Snell mistakenly concludes that  

  
sec(angle 𝐸𝐵𝐶)

sec(angle 𝐸𝐵𝐷)
=  

sec 𝛼′

sec 𝛽′
=  

1

cos 𝛼′
∙

cos 𝛽′

1
=  

sin 𝛼

sin 𝛽
= 𝑛. 

Snell is showing that  cos 𝛼′ =  sin 𝛽, however, it has just been shown that sin 𝛼 =  cos 𝛼′.  
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 From the lemma, it must be that 
sin 𝛽

sin 𝛼
=  

1

𝑛
 since 

sin 𝛼

sin 𝛽
= 𝑛, meaning that the index of air 

is 1 and Snell omitted the rearrangement of the fraction. If not, Snell is incorrect in his 

simplification as stated.  

The Influences of Descartes, Fermat, and Huygens 

 Following Snell, Descartes began to research sine law of refraction and first assumed that 

light acts as a projectile, with his specific example of a tennis ball. Descartes assumes that light 

is being refracted into a medium 1.5 times as dense as air, and using geometry, concludes that a 

quotient of sines is equivalent to 1.5, which he specifies is the index of refraction [9, 393-395]. 

Claims have been made that Descartes obtained information from Snell, and Snell’s law is often 

referred to as the Snell-Descartes Law, even though no accusations against Descartes have been 

confirmed.   

 Pierre de Fermat and Christiaan Huygens were both quick to criticize Descartes’s work, 

arguing that light does not travel instantaneously as Descartes suggested. Fermat’s principle of 

least time was shown as light traveling along the incident and refracted rays will take more time 

than the hypotenuse of the triangle made by the incident and refracted ray. Geometrically, it is 

clear that the sum of the lengths of two sides of a triangle is longer, and thus would take more 

time to travel along the longer path, than the length of the third side, as shown in Euclid. This 

proposition was also favored by Huygens, who was skeptical of Descartes’ work, criticizing that:  

“For it has always seemed to me, that even Mr. Des Cartes, whose aim has been to treat 

all the subjects of natural philosophy intelligibly, and who assuredly has succeeded in this 

much better than anyone before him, has said nothing that is not full of difficulties, or 

even inconceivable, in dealing with Light and its properties.” [9, p. 397] 

 

Such discrepancies led Huygens to prove for himself the laws of refraction.  
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Isaac Newton 

 Around 1664, Newton began to investigate optics, and specifically the law of refraction. 

Shortly after, Newton began to read the works of Robert Hooke and Descartes. Hooke had recently 

published an experiment using liquor, and specific investigations for color where he concluded  

“By this I have also found that look what proportion the Sine of the Angle of one 

Inclination has to the Sine of the Angle of Refraction, correspondent to it, the 

same proportion have all the Sines of other Inclinations to the Sines of their appropriate 

Refractions” [5]. 

It is apparent that the inclusion of color by Newton in the following axioms follows from 

research initiated by Hooke. Following the publication of Hooke’s experiment, Newton 

published an essay on refraction where he specifically credits Descartes’s work, which also 

included color. Newton ultimately negates Descartes, but was undoubtedly influenced by his 

work [10]. The critical nature of Newton’s evaluation of Descartes and Hooke led to the 

discovery of his axioms [4]. 

[Newton’s Axioms] 

AX. I.  

 

The Angles of Reflexion and Refraction, lie in one and the same Plane with the Angle of 

Incidence. 

 

AX. V. [Really, a theorem] 

[Claim]  

The Sine of Incidence is either accurately or very nearly in a given Ratio to the Sine of 

Refraction. 

[Restatement of Claim]  

Whence if that Proportion be known in any one Inclination of the incident Ray, 'tis known 

in all the Inclinations, and thereby the Refraction in all cases of Incidence on the same 

refracting Body may be determined.  

Thus if the Refraction be made out of Air into Water, the Sine of Incidence of the red Light 

is to the Sine of its Refraction as 4 to 3. If out of Air into Glass, the Sines are as 17 to 11. 
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In Light of other Colours the Sines have other Proportions: but the difference is so little 

that it need seldom be considered. 

[Original Fig. 1] 

 

 [Construction]  

Suppose therefore, that RS <in Fig. 1.> represents the Surface of stagnating Water,  

 

and that C is the point of Incidence in which any Ray coming in the Air from A in the Line 

AC is reflected or refracted, and I would know whither this Ray shall go after Reflexion or 

Refraction:  

  

I erect upon the Surface of the Water from the point of Incidence the Perpendicular CP and 

produce it downwards to Q,  



  

 25 

 

and conclude by the first Axiom, that the Ray after Reflexion and Refraction, shall be found 

somewhere in the Plane of the Angle of Incidence ACP produced, I let fall therefore upon 

the Perpendicular CP the Sine of Incidence AD [assuming AC = 1]… [information on 

reflection is omitted] 

[For refraction] 

…But if the refracted Ray be desired, I produce AD [from A, parallel to RS, where D is the 

point AD intersects PQ,] to H, so that DH may be to AD as the Sine of Refraction to the 

Sine of Incidence, that is, (if the Light be red) as 3 to 4  

[ 
𝐷𝐻

𝐴𝐷
=  

𝑆𝑖𝑛𝑒 𝑜𝑓 𝑅𝑒𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

𝑆𝑖𝑛𝑒 𝑜𝑓 𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒
=  

3

4
 ];  

 

[construct the refracted ray CE’]  
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and about the Center C and in the Plane ACP with the Radius CA describing a Circle ABE 

[where E is the point that CE’ intersects the circle, and B is unspecified yet],  

 

I draw a parallel to the Perpendicular CPQ, the Line HE cutting the Circumference in E, 

and joining CE, this Line CE shall be the Line of the refracted Ray.  
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For if EF be let fall perpendicularly on the Line PQ [where F is the point at which EF 

intersects PQ],  

 

this Line EF shall be the Sine of Refraction of the Ray CE, the Angle of Refraction being 

ECQ; and this Sine EF is equal to DH [EF = DH], and consequently in Proportion to the 

Sine of Incidence AD as 3 to 4.  

[Meaning, where the first equality is from above,  
3

4
=  

𝐷𝐻

𝐴𝐷
=  

𝐸𝐹

𝐴𝐷
=  

sin(∡ 𝐸𝐶𝑄)

sin(∡ 𝐴𝐶𝐷)
. ] 

[End of proof] 
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Comparison of Values from Air to Water 

Angle of 

Incidence 

Angle of 

Refraction - 

Ptolemy 

Value for n - 

Ptolemy 

Angle of 

Refraction - 

Harriot 

Value for n - 

Harriot 

Modern Angle of 

Refraction (Using 

n = 1.33) 

10 8 1.25 7.28 1.37 7.48 

30 22.5 1.31 22 1.33 22.02 

60 40.5 1.33 40.26 1.34 40.51 

 

Comparison of the Indices of Refraction 

Index of Refraction 

Stated 

Water Glass Air 

Snell 
4

3
 n/a 1 

Newton 
4

3
 

17

11
 1 

Modern 
4

3
 

3

2
 1 

 

Overall, each proof or experiment over time shows that there is a relationship between 

the angle of incidence, the angle of refraction, and the ratio of the two different mediums through 

which light in passing. Since many works were not published and readily available, it is possible 

that the sine law of refraction, specifically known as Snell’s Law, can be honestly attributed to 

several mathematicians. It has been shown that several results on the law have been produced, 

both with and without influence of previous research, and ultimately conclude the same result.  
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