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Chapter 3

Traditionalism: 1894 to 1925

3.3 The Traditionalist View of Set Theory

The relationship of the traditionalists to the theory of sets that provided the grist for
their mathematical discoveries was a tense and, at times, dissonant one. The disso-
nance is, in some regards, jarring: on the one hand, set theory was the core of their
mathematical research program, and their work was decisive in bringing set theory
into the mathematical mainstream; on the other, they felt deep mistrust toward
many of set theory’s central edifices—particularly Cantor’s theory of cardinals and
ordinals up to and including c and ω1, and later, Ernst Friedrich Ferdinand Zermelo’s
(1871-1953) Axiom of Choice—and largely disavowed them, setting boundaries to set
theory’s use that persist even in contemporary mainstream mathematical practice.

The tension is, in some regards, puzzling: in some cases, the traditonalists carried
their criticisms of Cantor’s even to elements of the theory that were, unbenknownst
to them, indispensable for their own work. And the positions they staked were, to
a certain degree, philosophically unrigorous, or, at least unsophisticated. But their
cautious regard for set theory was not irrational—rather, the traditionalists were
guided by the mathematical values they absorbed from their forbears. The tradi-
tionalists knew, consciously or unconsciously, that the measures of mathematical
legitimacy for any new theory were applicability to established mathematical prob-
lems and the possibility of carving out a domain in which the theory could be applied
without fear. In this regard, the traditionalists were reacting to two opposing forces:
the proliferation of set theoretic antinomies, which lent the theory a profound in-
ternal instability; and set theory’s untapped potential to reshape analysis. Their
position was a compromise, a way of laying out a safe fragment of set theory which
could be gainfully applied in a long-established and important research tradition
without risk of encountering the thorny—and, importantly, unmathematical—issues
that came from accepting the theory as a whole.

3.3.1 The early period: cautious acceptance

Even though the views of Baire, Borel, and Lebesgue shifted while their school of
set theory was in full flourish between 1894 and 1905, the essential characteristics
of their mature views were already present in their earliest publications. Three
characteristics are particularly salient in this regard: a generally suspicious attitude
toward set theory, a special regard for effectiveness—a term that for the French

1



Large Cardinals and Projective Determinacy

analysts took on a special meaning—and a profound concern for the applicability of
their research. Each of these three characteristics was a manifestation of an essential
belief in a realm of real or legitimate mathematics, toward which mathematical
endeavors ought to aim.

Set-theoretic unease

Borel begins Lessons with the following goal: “to give the notion of a set the pre-
cision necessary in order to use it in rigorous research” [Bor98, p. 1]. The central
question, in his view, is, when can one consider a set as given [Bor98, p. 2]. Can-
tor’s answer—when one can determine intrinsically and on the basis of the law of
excluded middle whether a given element belongs to the set or not—simply will not
do [Bor98, p. 2,fn. 1]. Rather, “[w]e shall say that a set is given when, by any means,
we know how to determine all the elements one after the other, without excepting
one and without repeating any of them several times” [Bor98, p. 3]. Borel offers
reasons for his caution:

“[O]ne of the ideas that we should be most fortunate to give to the reader
who wishes to think for himself on the theory of functions is that, in all
questions to which the infinite appertains, one must be extremely wary
of alleged clarity: nothing is more dangerous than to rest content with
empty words in such matters” [Bor98, p. 3].

His trepidation was well-warranted. Since the publication of Borel’s thesis, Cesare
Burali-Forti’s (1861-1931) modestly titled A question on Transfinite Numbers had
caused a stir in the mathematical community. The crux of the article was the
following observation: if one takes Ω to be the set of all ordinals, then Ω itself
is a well-ordering, to which some ordinal α corresponds. Since α ∈ Ω, Ω must
be an initial segment of one of its own initial segments, something Cantor had
independently proven impossible in the same year [Can52, p. 144]. The failing was,
in Burali-Forti’s opinion, substantial: “It seems that the order types thus fall short
of one of their most important objectives” [BF67, p. 111].

Burali-Forti’s discovery was a shattering blow to a theory that had raised hackles
from the outset; it was made only the more terrible by the rapid discovery of further
paradoxes by Bertrand Arthur William Russell (1872-1970), Jules Antoine Richard
(1862-1956), and Julius König (1849-1913). The “intrasubjective immanent reality”
that Cantor had thought secured his theory seemed to grow feebler with each passing
day [Can05, §8.1].

Thus, it is no surprise that Baire too, fearful of building on sand, dispenses with
any set theory he can do without:

“I will point out once and for all on this subject that we shall never
have to worry about the difficulties included in the abstract notion of
transfinite number . . . In actuality, for example, the set Pα, α being a
determined number of the second number class, represents something
perfectly determined independent of all abstract considerations relating
to the symbols of Mr. Cantor” [Bai98, p. 36].

While he and Lebesgue display a greater comfort than Borel with the set theoretic
tools they adopt, none share in the exuberance for set theory displayed by Cantor
and his other early followers.
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Effectiveness

Effectiveness was a key mantra for the French analysts. For instance, Borel writes
that his proof of the Heine-Borel Theorem, while more complicated than other
proofs, has the chief virtue that it demonstrates that “one can choose effectively
a limited number of intervals” covering the given interval [Bor94, p. 43; emphasis
mine]. In Lessons, he is concerned to give an “effective” demonstration of the exis-
tence of sets having uncountable cardinality, and praises Charles Hermite’s (1822-
1901) demonstration of the transcendence of e: “It was, in effect, the first effective
example, if one may so speak of it, of a transcendental number; that is to say, the
first example of a transcendental number defined in a simple way by analysis and
not only by arithmetical series” [Bor98, p. 25].1

Similarly, Baire extols the interest of “effectively demonstrating the existence of
functions belonging to different classes” [Bai98, p. 71]. Lebesgue, for his part, draws
much of the justification for the project of his 1905 On the Analytic Representation of
Functions from Baire’s failure to do just that. The construction of explicit, concrete
examples was to be preferred to the cardinality-based arguments he had adduced to
show the existence of a Lebesgue measurable set that was not Borel, and that Baire
had adduced to show that there was a function not in any function class.

What, exactly, was meant in this period by “effectiveness”? Borel’s Lessons
provides some indication:

“It seems to us that this is an axiom which must be admitted in the same
way as the axiom of Archimedes, and in a very general manner; It is in
any case certain that this proposition is not dubious, by the words, ‘any
function,’ one understands a function which can be effectively defined,
that is to say such that one can, by a limited number of operations,
calculate, with a given approximation, its value for a given value of the
variable” [Bor98, p. 117].

In parallel, Baire remarks that the advantage of his system of classification of discon-
tinuous functions is that they grow “more and more complicated, but [are] always
capable of being tethered in a very precise manner to the continuous functions”
[Bai98, p. 70]. Indeed, it is this connection—borne out in a finite number of steps
by the fact that, since no decreasing sequence of ordinals can be of infinite length—
that Lebesgue used to such effect in On Analytically Representable Functions.

Effectiveness, in short, meant the potential to actually be carried out explicitly
and concretely. The standard was not a metaphysical one, but rather heuristic, and
determined in reference to past mathematical practice: Hermite’s proof of the tran-
scendence of e was effective because it involved something seemingly more specific
and natural, i.e., the limit of the sum

∞∑
n=1

1

n!
= 1 +

1

2
+

1

3
+

1

4
+ · · · (3.1)

1Borel is contrasting Hermite not only with Liouville’s construction, which he found unnatural,
but also the set theoretic proofs, which, with regard to effectiveness, were even more objectionable.
Of course, Borel invented one of the set theoretic proofs, in which one shows that the algebraic
numbers have measure zero. This is a typical example of the kind of dissonance with which Borel
in particular contended.
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than the more anonymous Liouville numbers; likewise, arguments based upon ar-
bitrary functions and cardinalities lacked the meat of demonstrations based upon
what was more easily recognizable as a calculation. Of course, effectiveness was, for
different individuals, a virtue in varying degrees: for Borel, it was law—arbitrary
discontinuous functions were totally inadmissible, as one had no procedure for cal-
culating when two were the same [Bor98, p. 125]. For Lebesgue, it was merely a
signpost, pointing the way toward richer mathematics. Indeed, Lebesgue criticizes
the stringency of the requirements placed by Borel upon functions, noting that they
are too restrictive even to admit the second level of the Baire hierarchy:

“In general, a calculation is illusory if it is assumed that two passages
are performed successively at the limit, unless the second is related to
a uniformly convergent sequence. Now, it is such a calculation that one
would have to make to calculate χ(C),2 C being given later by its decimal
digits, that is to say by a series” [Leb05, p. 206].

Nevertheless, the value was a shared one, and played a signal role in shaping their
mathematical endeavors.

Applicability

The final value of the French analysts, both explicit and tacit in their work, is
applicability. A piece of mathematics rose to the level of a contribution when it shed
light on well-established mathematical problems. Thus, we find Borel, in his thesis,
self-consciously attempting to “see what importance [his results on discontinuous
functions] might have for applications, notably in mathematical physics” on the
basis of the fact that “no demonstration has ever been given that one can apply
Taylor’s formula to the functions one encounters in physics” [Bor94, p. 3]. For
Baire, set theory was an indispensable tool for the study of functions:

“[A]ny problem relative to the theory of functions leads to certain ques-
tions relative to the theory of sets; and it is to the extent that these
latter questions are advanced or can be advanced that it is possible to
resolve more or less completely the given problem” [Bai98, p. 121].

Lebesgue, perhaps more so than any of the others, sees with acuity the impor-
tance of set theory to matters of fundamental importance in mainstream mathemat-
ics. His principal object in his thesis is “to give definitions as general and precise
as possible of some of the numbers one looks at in Calculus: a definite integral,
the length of a curve, and the area of a surface” [Leb07, p. 1212]. Indeed, of the
three, his contribution to mainstream mathematics is perhaps the most profound,
having utterly reshaped the field of real analysis [HL02, p. 3]. But it was Borel
who summed up the attitude best when he wrote some years later, reflecting on set
theory’s increasing formality and distance from ordinary mathematical concerns,
that

“From the day set theory stops being metaphysical and becomes practi-
cal, the new ideas may produce a flowering of beautiful results. . . Maybe
from this profusion of formal logic, which appears as a construction with-
out any basis, one day some useful idea will come” [GK09, qtd., p. 63].

2Here, χ denotes the indicator function of the rational numbers.
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The ordinals and cardinals

Nowhere are these values more striking than in the French analysts’ treatment of
transfinite arithmetic. For Cantor, the ordinals were isolated from “transsubjective
or transient reality” of which one’s ideas of numbers form a part by virtue of oc-
cupying a completely determinate place in one’s understanding [Can05, §8.1]. For
the French analysts, this explanation of what the ordinal numbers are must have
seemed like empty speculation with no place in mathematics. It is no surprise then
that they were consequently loathe to use the ordinal numbers: even ten years after
the publication of his thesis, Lebesgue felt the need to apologize for his use of the
ordinals in the second edition of Lessons on Integration and the Search for Primitive
Functions3 [HL02, p. 5].

Far more strongly opposed was Borel, who, in the appendix to Lessons, criticizes
Cantor’s transfinite numbers for being subject to antinomies and constructed in
a circular manner. Cantor had posited three principles of generation for ordinal
numbers. The second of these was that “if any defined sequence of integers is put
forward of which no greatest exists . . . a new number is created, which is thought
of as the limit of those numbers” [Can05, §11.2]. It was on this basis that Cantor
deduced the existence of ω1. Both this and the construction of the second number
class as a completed entity concern Borel. He writes,

“On the other hand, as [the second principle’s] application [to a countable
sequence in the second number class] leads only to a countable set, to
which it is again applicable, there is an antinomy which . . . cannot
be resolved except by attributing a sense to the word transfinitely and
admitting, consequently, that in applying the theorem transfinitely on
will have a set . . . of cardinality greater than the first” [Bor98, p. 121].

Of course, Borel thinks to do so is totally illegitimate: the only meaning one can
assign, a priori, to the word “indefinitely” is “as often as there are whole numbers”
[Bor98, p. 122]. One cannot assign it the meaning “as often as there are numbers of
the second number class,” as the second number class is assumed to be the result of
“indefinitely” constructing larger numbers of the second number class [Bor98, p. 122].

For this reason, Borel denies the existence of ℵ1—and is presumably why he
did not attempt, as Baire, to stratify his measurable sets. He feels secure in this
renunciation, because of a kind of working mathematician’s continuum hypothesis:
the cardinality of the continuum and the cardinality of the natural numbers “suffice
for the applications we have in view” [Bor98, p. 20].

But some ordinal numbers are indispensable for his analytic task. Borel’s solution
is to construct all of the ordinal numbers one might need in analysis in terms of
concrete, familiar mathematical objects: functions. Given a function ϕ(n) growing
faster than n,4 Borel notes that

lim
n→∞

ϕ(n)

n
= lim

n→∞

ϕ(ϕ(n))

ϕ(n)
= . . . = lim

n→∞

ϕm(n)

ϕm−1(n)
= . . . =∞ (3.2)

and
lim
n→∞

n

ϕ(n)
= lim

n→∞

ϕ(n)

ϕ(ϕ(n))
= . . . = lim

n→∞

ϕm−1(n)

ϕn(n)
= . . . = 0 (3.3)

3Leçons sur l’Integration et la Recherche des Fonctions Primitive.
4Borel actually construes the functions as functions of a real variable; this presentation is merely

simpler.
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where ϕm+1(n) = ϕ(ϕm(n)). Thus, the functions n, ϕ(n), ϕ1(n), . . . , ϕm(n), . . .
can be ordered by their rate of growth in exactly the same manner as the natural
numbers. Now, the function ψ(n) = ϕn(n) has the property that

lim
n→∞

ψ(n)

ϕm(n)
=∞ lim

n→∞

ϕm(n)

ψ(n)
= 0 (3.4)

Thus ψ(n) stands in relation to the ordering n, ϕ(n), ϕ1(n), . . . , ϕm(n), . . . exactly
as ω, in Cantor’s system, stands in relation to 1, 2, . . . , m, . . . The function ϕ(ψ(n))
can go proxy for ω + 1, and similarly, one can build a countable collection of func-
tions having the order type of any countable ordinal. Moreover, this construction—
effected by means of a theorem of Paul David Gustav du Bois-Reymond (1831-
1889)—as opposed to Cantor’s second principle of generation, “is not a postulate; it
is a mathematical fact that does not rest upon any a priori consideration” [Bor98,
p. 121]. It has the additional advantage that “its power is much more limited [than
Cantor’s principle]; it carries within itself its bounds [principe d’arrêt ], for it is not
applicable except as far as the set already obtained is countable” [Bor98, p. 121].

Lebesgue employs the same gambit in On the Analytically Representable Func-
tions, writing,

“I wish to say why the application, used in this classification, of the
transfinite numbers does not raise, in my opinion, any difficulty. If one
studies the growth of functions and if, having characterised the growth
of xn by n, one notes that ex grows faster than xn, one could feel the
desire to characterize this new growth rate by a new symbol, ω. No one
will see any inconvenience. . . Besides, the classification of Mr. Baire. . .
can, as the theory of the growth of functions, provide a solid base for the
theory of transfinite numbers” [Leb05, pp. 142-3].5

It is in this manner that the French analysts rid themselves—or attempt to rid
themselves—of anything appertaining to Cantor’s infinite not absolutely necessary
for the study of analysis.

3.3.2 The late period: Poincaré and Zermelo

Poincaré and real mathematics

Borel, Baire, and Lebesgue were influenced a great deal by Poincaré. Already in
1894, Poincaré had begun to lay out his philosophical views on mathematics, praising
intuition—intended in a Kantian sense—as the foundation of mathematics, and the
source of mathematical meaning and progress. His opponents were the Logicists, a
group of mathematicians who sought to remake mathematics purely on the basis of
logic. To Poincaré, this was totally unnacceptable: “Pure logic could never lead us
to anything but tautologies; it could create nothing new; not from it alone can any
science issue” [Poi05a, §3].

5There is actually something slightly more problematic about what Lebesgue is proposing than
the quotation above indicates. Recall that it is in On the Analytically Representable Functions that
Lebesgue proves that the Baire classes corresponding to different ordinals are actually different.
To do so, he actually requires the existence of the ordinals for which he is here proposing the Baire
classes could replace.
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Poincaré’s opposition was informed, in large part, by a perceived disconnect
between the practice of logic and the practice of mathematics:

“If you are present at a game of chess, it will not suffice . . . to know the
rules for moving the pieces. That will only enable you to recognize that
each move has been made conformably to these rules, and this knowledge
will truly have very little value. Yet this is what the reader of a book of
mathematics would do if he were a logician only” [Poi05a, §8].

The rapidly developing methods of formal logic, and its accompanying suite of eso-
teric symbols, seemed, to Poincaré, to miss the essence of mathematics.

Poincaré’s view was a deeply psychologistic one [Gol88, p. 63]. Poincaré con-
strued mathematics as constructive mental activity, undergirded by those truths of
which one is immediately convinced [Gol88, p. 63]. In this, he did not differ from,
for instance, Cantor or Dedekind, but he bitterly opposed them. The antinomies
of set theory, Poincaré proposed, were merely a byproduct of mathematics which
had become too disconnected from the realities of mathematical practice: while the
logicians struggled to resolve the paradoxes, Poincaré maintained that “True mathe-
matics, where one does not wallow in the actual infinite, is not in question” [Poi05b,
§13]. Nonetheless, Poincaré recognized the importance of set theory; like Borel, he
merely thought that the Cantorians had erred in forgetting that “There is no actual
(given complete) infinity. . . It is true that Cantorism has been of service, but this
was when applied to a real problem whose terms were precisely defined, and when
we could advance without fear” [Poi05b, §15].

Zermelo’s principle and the mature formulation of the traditionalist view

Poincaré’s objections, though they began in the 1890’s, crescendoed only after the
turn of the century. They reached their loudest in 1905, following the publication in
1904 of Proof that every Set can be Well-Ordered, a short paper by Ernst Friedrich
Ferdinand Zermelo (1871-1953). In it, Zermelo provides a proof of what Cantor con-
sidered a “fundamental law of thought of great consequence” [Zer67c, qtd., p. 139]:
that every set can be brought into the form of a well-ordered set. Zermelo’s proof
depends upon what would become known as Zermelo’s Principle or the Axiom of
Choice: given any collection of non-empty sets, one can simultaneously choose from
each a single element. This seemingly innocuous, even self-evident, statement soon
caused a stir, drawing the criticism of such eminent mathematicians as Peano, Borel,
and Poincaré [Poi05b, §13], [Zer67b, p. 186].

Zermelo’s goals were quite different from those of the French analysts. “Set the-
ory,” he wrote, “is that branch of mathematics whose task it is to investage math-
ematically the notions ‘number’, ‘order’, and ‘function’ . . . and to develop thereby
the logical foundations of arithmetic and analysis” [Zer67a, p. 200]. The antinomies
had threatened the theory, but by grounding the sets in explicit axiomatics, one
could “retain all that is valuable in . . . the entire theory created by Cantor and
Dedekind” [Zer67a, p. 200].

But the traditionalists, who viewed set theory as playing quite a different role
in mathematics, did not agree, and rejected his axiom of choice. Their reasons for
doing so evinced Poincaré’s influence. Borel, one of Zermelo’s quickest critics, saw
the situation in characteristic fashion:

Chapter 3 Johann D. Gaebler 7
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“It seems to me that the objections that one can raise against [Zermelo’s
proof] apply equally well against any reasoning where one supposes an
arbitrary choice to be made a non-denumerable infinity of times; such
reasonings are outside the realm of mathematics” [BBLH05, p. 1077].

But he was not without his detractors. Jacques Salomon Hadamard (1865-1963)
wrote to Borel soon after, posing the following objection:

“What is certain is that Zermelo provides no method to carry out ef-
fectively the operation which he mentions, and it remains doubtful that
anyone will be able to supply such a method in the future. But the
question posed in this way (the effective determination of the desired
correspondence) is none the less completely distinct from the one that
we are examining (does such a correspondence exist?). Between them
lies all the difference, and it is fundamental, separating what Tannery
calls a correspondence that can be defined from a correspondence that
can be described ” [BBLH05, p. 1078].

Foreseeing the potential importance of their conversation, Borel forwarded the
letter to Baire and Lebesgue. What followed was an profoundly revealing exchange
of letters, in which each of the French trio revealed the distillation his ideas had
undergone in a few short years. While Borel still did not believe in the uncountable,
Baire, who had proudly advanced knowledge of “arbitrary functions” only a few years
before now went further than Borel, maintaining that all infinities, even countable
ones, are merely “in the realm of potentiality . . . [D]espite appearances, in the last
analysis everything must be reduced to the finite” [BBLH05, p. 1080]. Lebesgue, for
his part, intoned that “I do not grant . . . any validity to the argument showing that
a set which is not finite has a denumerable subset. Although I seriously doubt that
a set will ever be named which is neither finite nor infinite, it has never been proven
to my satisfaction that such a set is impossible” [BBLH05, p. 1083].

In their discussions, one question emerges as fundamental: what is required to
prove existence in mathematics? All three object on the basis that, in the sense
they find meaningful, one may not even succeed in choosing a single element from
an arbitrary set. In Lebesgue’s words,

“I use the word to choose in the sense of to name . . . So as to convey
more clearly the difficulty that I see, I remind you that in my thesis I
proved the existence . . . of sets that were measurable but were not Borel-
measurable. Nevertheless, I continued to doubt that any such set could
ever be named. Under these conditions, would I have the right to base
an argument on this hypothesis . . . even though I doubt that anyone
could ever name one? Thus I already see a difficulty with the assertion
that ‘in a determinate M ′ I can choose a determinate m′’ ” [BBLH05,
p. 1082].

The crux of the matter is that without a procedure—what they might see as a
determinate mental procedure—for distinguishing a single element in a set from all
others, one cannot concretely effect such a choice.

Of course, Lebesgue and Baire, at least, are sensitive to the apparent contra-
diction that Hadamard points out between their current positions with their earlier

8 Chapter 3 Johann D. Gaebler
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works. Borel, for instance, implicitly called on the axiom of choice in his 1894 proof
of the Heine-Borel theorem. But they rebuke Hadamard’s criticism that, in focusing
so pointedly on definitions, “existence is a fact like any other” independent of the way
it was proven [BBLH05, p. 1084]. Borel, in an elegant summary of the traditionalist
ethos, closes the conversation with the following words:

“I prefer not to write alephs. Nevertheless, I willingly state arguments
equivalent to those which you mention, without many illusions about
their intrinsic value, but intending them to suggest other more serious
arguments . . . One may wonder what is the real value of these arguments
that I do not regard as absolutely valid but that still lead ultimately to
effective results . . . They have a value analogous to certain theories in
mathematical physics, through which we do not claim to express reality,
but rather to have a guide that aids us, by analogy, in predicting new
phenomena which must be verified” [BBLH05, p. 1086].

3.3.3 The end of the French school

Borel, Baire, and Lebesgue’s seminal works in analysis between 1894 and 1905 re-
cast analysis in the image of set theory; no longer was it possible to ignore set
theory as mere philosophical speculation, without mathematical substance. But
just as quickly as the new techniques were ushered in, interest in them—at least
in France—dried up. By 1904, Lebesgue had produced, in more or less consum-
mate form, the solution to the problem of the Fundamental Theorem of Calculus
promised in his thesis, as well as invaluable tools for analysis, such as the Dominated
Convergence Theorem [HL02, p. 6]. Fubini’s Theorem as well as early applications
in potential theory and Fourier analysis vindicated the new conception of integral
and measure: Plancherel proved his eponymous theorem in 1910 using Lebesgue’s
integral, providing, in some sense, a complete solution to the century old problem
[HL02, p. 7], [HS05]. Lebesgue’s interest in set theory began to wane around 1910,
in part due to a fear that his contributions had been too systematic: “reduced to
general theory mathematics would be a beautiful form without content. It would
die quickly, as many branches of our science have died just at the time when general
results seemed to guarantee them a new activity” [HL02, qtd., p. 10].

Borel, for his part, had begun to turn more and more toward applied branches
of mathematics—especially probability and game theory—and politics [HL02, p. 9].
Though closely connected intellectually, Lebesgue and Borel’s relationship had al-
ways suffered from a certain strain. Borel, whose grandfather had been a rich wool
merchant and whose wife was the daughter of the celebrated French mathematician
Paul Emile Appell (1855-1930)—fueling the facetious observation, common at the
time, that “genius is transmitted to sons-in-law” [GK09, p. 42]—belonged to a mil-
lieu in which the more modest Lebesgue was not always at home [GK09, pp. 63-4].
Lebesgue was a Dreyfusard; Borel, a firm supporter of the military [HL02, p. 9].
Their friendship took a blow in 1912 when Borel published a paper trivializing
Lebesgue’s work and worsened considerably when Lebesgue was placed under his
command in World War I [HL02, p. 8], [GK09, p. 64]. By 1917, their friendship
had evaporated, destroyed by a bitter priority dispute, and for many years neither
had returned to the set theory of his youth [GK09, p. 64]. Baire, for his part, lan-
guished in provincial teaching posts, unable to research because of a mental illness
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aggravated by his lack of recognition [OR00].
Before long, no new set theory was issuing from its three former stars. Borel,

describing the evolution of his attitude toward set theory spoke in some sense for all
three when he wrote: “Like many young mathematicians, I had been immediately
captivated by the Cantorian theory; I don’t regret it in the least, for that is one
mental exercise that truly opens up the mind” [GK09, qtd., p. 40]. Nevertheless,
important questions remained. An eager group of investigators would soon discover
that Lebesgue’s On Analytically Representably Functions had resolved less than it
claimed. Indeed, even its principal achievement—the effective construction of a non-
Borel measurable set—was subject to doubt on the basis of its dependance upon
the existence of ℵ1. With a whole world of sets now intermediate between the
extremes of perfect and arbitrary sets, the possibility of revitalizing the program of
research that had led to the Cantor-Bendixson theorem emerged. A new group of
mathematicians who shared in many of the French analysts values—especially the
priority of analysis and the importance of effective constructions—would vigorously
pursue these matters.
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