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 For centuries, strides have been made towards equal educational rights for women 

worldwide. While the finish line has not yet been reached in some parts of the world, the overall 

situation for women, particularly in higher-level education, has improved significantly. Today, 

many people argue that the gender inequality problem still exists in science and mathematics. 

While women are still underrepresented in mathematics, the reason for this gender gap does not 

necessarily lie within the mathematical community. Rather, one might claim that the issue stems 

from the isolation of the mathematical community from the rest of the world.  

While other STEM disciplines receive ample media coverage, mathematics lacks this 

outlet because research in mathematics does not require the same level of public funding or have 

as immediate of an effect on society [7]. Therefore, the general public’s knowledge of 

mathematics is largely informed by the subjects covered in high school core math requirements. 

Because of stigmas against women in academia during the foundational eras of mathematics, 

men discovered the majority of what is learned in grade school. Moreover, many modern 

advances in mathematics are considered far beyond the scope of a high school classroom, so 

students are less likely to know about current mathematical research and women’s roles in it. In 

this way, societal attitudes towards mathematics in general have hindered widespread knowledge 

of women’s accomplishments in mathematics.  

Because mathematicians as a whole are underrepresented in the media, female 

mathematicians are even less visible in popular culture. This may lead society to construct a 

gendered view of mathematics as a subject, informed by poor portrayals of diversity within the 

mathematical community. This creates a cycle with less women entering and remaining in 

mathematics and, therefore, fewer female mathematicians. Historically, women’s greatest 

obstacles to becoming mathematicians have been societal bans on women’s access to upper level 



3 
 

education, societal views on highly educated women, and the influence of these societal views on 

academia. After overcoming these obstacles, several women have had the privilege of 

encountering contemporaries who saw their mathematical potential and encouraged them in their 

studies. Many of these women have been recognized by the mathematical community at large for 

their groundbreaking work. Not all women had these opportunities, but two women who fought 

to gain access to upper level education and, ultimately, triumphed over the prejudices against 

them were Sophie Germain and Sonya Kovalevskaya. Both gained access to higher education 

despite the societal obstacles, which sought to keep them out, and ended up winning over much 

of the mathematical community with their work, collaborating with some of their most well-

known mathematical contemporaries.  

 Sophie Germain was born in Paris, France on April 1, 1776 to Ambroise-François 

Germain and Marie-Madeline Germain née Gruguelin[6]. She had two sisters, Marie-Madeline 

and Angélique-Ambroise. Her father was a silk merchant and a representative in the États-

Généraux of 1789, a group made up of nobility, clergy, and commoners tasked with making 

decisions on new taxes for France [1]. This committee was necessary to deciding how to pay off 

the expenses incurred during the wars of the previous century. As the meetings progressed, the 

representatives from the Third Estate were not satisfied with how decisions were being made and 

rising tensions amongst the classes eventually lead to the Revolution of 1789 [4]. Four years 

later, the period of the French Revolution known as the Reign of Terror began [15].  

Because of the dangerous conditions outside, Germain was generally kept in the house, 

and she spent much time in her father’s library. In her readings, she came across the story of 

Archimedes’ death [12]. According to the most common version of the story, Archimedes was so 

absorbed in a geometry problem that he did not realize that his city had been overtaken by 
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Roman troops. When Archimedes, distracted by his work, told an approaching soldier not to 

disturb his diagram, the insulted soldier killed him. Awestruck at the mathematician’s dedication, 

Germain decided to devote herself to the study of mathematics. Her determination was tested by 

her parents who worried that too much study would be harmful to their daughter.  

While it was in vogue at this time for upper-class women to engage in intellectual 

conversation, Germain’s parents held to the belief that such pursuits would place to much of a 

strain on their young daughter’s mind. With this concern as their motivation, they took away her 

fire, light, and clothing hoping to deter her from her studies. When they found her one morning 

asleep at her desk, wrapped in her bedclothes with a frozen inkwell, Germain’s parents realized 

that there would be no stopping their daughter from pursuing mathematics and relented. Germain 

was allowed to continue her studies openly and absorbed as much as she could of the 

mathematics being developed around her. 

In 1794, L’Ecole Polytechnique was founded to educate the next generation of French 

scientists and mathematicians, but women were not allowed to attend lectures there. Germain, 

determined to gain the best education possible, took on the pseudonym Monsieur LeBlanc. 

LeBlanc had been a student at the school but left and neglected to tell the administration [18]. 

Germain saw her chance and used M. LeBlanc’s name to access notes from lectures, including 

those of Joseph Louis Lagrange. In addition, she used her pseudonym to submit some of her 

observations to Professor Lagrange. This was a common practice amongst students at L’Ecole 

Polytechnique, and upon reading Germain’s submissions, Lagrange requested a meeting with the 

student who had produced them. Germain was apprehensive in revealing her gender due to 

negative social views on women in academia. Contrary to Germain’s fears, Lagrange respected 

her as a budding mathematician regardless of her gender and continued to offer his support in her 
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pursuit of mathematics. As she continued her studies, Germain went on to exchange 

correspondences with great mathematical thinkers of her time including Carl Friedrich Gauss.  

In her letters to Gauss, Germain resumed the use of her pseudonym, M. LeBlanc. Despite 

her acceptance by other male contemporaries, she still feared that they would look down on her 

because of her gender. One of her letters to Gauss expressed her “temerity in troubling a man of 

genius when [she had] no other claim to his attention than an admiration necessarily shared by all 

his readers” [18]. In their letters, Germain and Gauss discussed work that Germain had done in 

the field of number theory. During the early years of their correspondence, Napoleon Bonaparte 

rose to power in France and set a course to build an empire [10]. Among the countries embroiled 

in the Napoleonic Wars was Gauss’s home, Prussia. While still keeping up the charade of being a 

male Polytechnique student, Germain discovered that Gauss was living in Hanover, a French 

occupied town [12]. Fearing for her colleague’s life after remembering Archimedes sudden 

death, Germain asked a family friend to make sure that the mathematician was all right. Gauss 

thanked the young woman for her concern though he had no knowledge of who she was because 

he was still unaware that M. LeBlanc was actually Sophie Germain. After this episode, Germain 

wrote to Gauss explaining who she was and giving her reasons for lying about her gender, and 

like Lagrange, Gauss continued to support her, impressed by the young student’s work. In fact, 

in a letter to Germain, Gauss wrote of his shock at learning that she was a woman and recognized 

that “when a person of the sex which, according to [the] prejudices and customs [of the time], 

must encounter infinitely more difficulties than men to familiarize herself with these thorny 

researches, succeeds nevertheless in surmounting these obstacles… she must have the noblest 

courage, quite extraordinary talents and superior genius” [18]. 
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 Germain’s most significant work in number theory included her research on Fermat’s 

Last Theorem, a problem that had “often tormented her” [16].  

Fermat’s Theorem: 𝑥𝑛 + 𝑦𝑛 = 𝑧𝑛 has no positive integer solutions for 𝑥,𝑦 𝑧 

when 𝑛 > 2. 

Her early efforts included an attempt to prove that for all odd prime exponents 𝑝, there exists an 

infinite number of auxiliary primes with the form 2𝑛𝑝 + 1 such that the set of non-zero 𝑝-th 

power residues of 𝑥𝑝𝑚𝑜𝑑(2𝑛𝑝 + 1) does not contain any consecutive integers [16]. Power 

residues correspond to the value 𝑎 in the congruence 𝑥𝑛 ≡ 𝑎 𝑚𝑜𝑑(𝑚). If the congruence is 

solvable, then 𝑎 is a residue of degree 𝑛 modulo 𝑚 [14].  

Applying this to Germain’s problem, consider a case where 𝑛 = 2 and 𝑝 = 7, then 𝑝 =

2(2)(7) + 1 = 29 which is an odd auxiliary prime of 7. 

{ 17, 27, 37, 47, 57, 67, 77, 87, 97, 107, 117, 127, 137, 147, 157, 167, 177, 187, 197, 207, 217,  

227, 237, 247, 257, 267, 277, 287} 𝑚𝑜𝑑 29 

≡ {1, 128, 2187, 16384, 78125, 279936, 823543, 2097152, 4782969, 10000000, 19487171,  

35831808, 62748517, 105413504, 170859375, 268435456, 410338673, 612220032,  

893871739, 1280000000, 1801088541, 2494357888, 3404825447, 4586471424,  

6103515625, 8031810176, 10460353203, 13492928512} 𝑚𝑜𝑑 29 

≡ {1, 12, 12, 28, 28, 28, 1, 17, 28, 17, 12, 17, 28, 12, 17, 1, 12, 17, 12, 1, 12, 28, 1, 1, 1, 17, 17, 28} 

𝑚𝑜𝑑 29 

≡ {1, 12, 17, 28} 𝑚𝑜𝑑 29 

 Therefore, the non-zero 7th power residues of 𝑥7 𝑚𝑜𝑑 (29) are 1, 12, 17, and 28. As 

nonconsecutive integers, these values satisfy Germain’s condition. Continuing in this way, one 

can find the qualifying auxiliary primes for each odd prime number. It was later proved that there 
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are only a finite number of auxiliary primes that satisfy the nonconsecutive 𝑝-th power residue 

condition, so Germain’s solution as stated above could never succeed.  

After several failed attempts, Germain offered a proof for prime numbers 2 < 𝑛 < 100 

for Case 1 of Fermat’s theorem. This case states that for the equation 𝑥𝑛 + 𝑦𝑛 + 𝑧𝑛 = 0 no 

integer values for 𝑥,𝑦, and 𝑧 exist such that these values are not divisible by 𝑛. The constraints 

that provide the basis for her proof have become known as Germain’s Theorem [6].  

Germain’s Theorem: Let 𝑛 be an odd prime. If there is a secondary (“auxiliary”) 

prime 𝑝 with the properties that 

(1) 𝑥𝑛 + 𝑦𝑛 + 𝑧𝑛 ≡ 0 (𝑚𝑜𝑑 𝑝) implies that 𝑥 ≡ 0 or 

𝑦 ≡ 0 or 𝑧 ≡ 0 (𝑚𝑜𝑑 𝑝), and 

(2) 𝑥𝑛 ≡ 𝑛 (𝑚𝑜𝑑 𝑝) is impossible, 

then Case 1 of Fermat’s Last Theorem is true for 𝑛. 

Germain’s Theorem can be proved for auxiliary primes 𝑝 = 2𝑛 + 1 using Fermat’s Little 

Theorem [3].  

Fermat’s Little Theorem: Let 𝑝 be a prime that is a positive integer that if 

relatively prime to 𝑝. Then, 

𝑎𝑝−1 ≡ 1 𝑚𝑜𝑑 𝑝. 

Now, consider a prime n with an auxiliary prime 𝑝 = 2𝑛 + 1. 

𝑎2𝑛+1 = 𝑎𝑝  

which can be multiply by 𝑎−1on each side to produce 

𝑎2𝑛 = 𝑎𝑝−1. 

Taking into account Fermat’s Little Theorem, 

 𝑎2𝑛 = 𝑎𝑝−1 ≡ 1 𝑚𝑜𝑑 𝑝 
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which simplifies to 

(𝑎𝑛)2 = 𝑎𝑝−1 ≡ 1 𝑚𝑜𝑑 𝑝. 

Therefore,  

(𝑎𝑛)2 − 1 ≡ 0 𝑚𝑜𝑑 𝑝 

which factors into 

(𝑎𝑛 + 1)(𝑎𝑛 − 1) ≡ 0 𝑚𝑜𝑑 𝑝. 

Because 𝑝 is a prime, 𝑎𝑛 ≡ 1 𝑚𝑜𝑑 𝑝 or 𝑎𝑛 ≡ −1 𝑚𝑜𝑑 𝑝, meaning that 𝑥, 𝑦, or 𝑧 must be 

congruent to 0 𝑚𝑜𝑑 𝑝 or  

𝑥𝑛 + 𝑦𝑛 + 𝑧𝑛 = ±1 ± 1 ± 1. 

Therefore conditions (1) and (2) are proven for Germain’s Theorem because 𝑥𝑛 + 𝑦𝑛 + 𝑧𝑛 will 

never be congruent to 0 𝑚𝑜𝑑 𝑝 unless 𝑥,𝑦, or 𝑧 is congruent to 0 𝑚𝑜𝑑 𝑝 and 𝑥𝑛 will never be 

congruent to 𝑛 𝑚𝑜𝑑 𝑝. Through her earlier work, Germain had also proved the cases where the 

auxiliary prime 𝑝 took the forms 4𝑛 + 1, 8𝑛 + 1,10𝑛 + 1,14𝑛 + 1, or 16𝑛 + 1. Adrien-Marie 

Legendre later confirmed that conditions (1) and (2) of Germain’s Theorem hold for these cases. 

Besides her theorem, the concept of Germain primes also came out of her work proving 

Fermat’s Last Theorem. Germain primes are those primes 𝑝 for which 2𝑝 + 1 is also a prime. 

Some examples of Germain primes are 2, 3, 5, 11, 23, etc. Over the years, mathematicians have 

worked to find larger and larger Germain primes. The most recent discovery of one was in 

March 2010 with 79911 digits. In addition to Germain primes, there are numbers known as 

sophiens [6]. A sophien was defined by E. Dubouis to be a prime 𝑝 = 𝑘𝑛 + 1 such that 𝑛 is also 

a prime that satisfies xn≡yn+1 (mod p). These numbers were named in honor of Germain’s work. 

In addition to her work in number theory, Germain contributed to work on elasticity [12]. 

In 1811, the French Academy offered a prize for a mathematical explanation of the observations 
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of Ernest Chladni. Chladni took note of the patterns left when vibrations were sent through a 

piece of metal covered in a layer of sand but did not have the mathematical background to 

understand what was happening. The 1811 competition received only one entry, which was 

submitted by Sophie Germain. While her theory was headed in the right direction, Germain’s 

work was incorrect. The Academy offered two more competitions on the same subject in 1813 

and 1816 where Germain received an honorable mention and, finally, the prize in spite of 

continued concerns about the rigor of her work. While the support of her contemporaries had 

aided Germain in her learning and success, it lacked “substantive criticism from which she might 

learn” [6]. Many recognized her genius, but the rigor of her work was not necessarily on par with 

the mathematicians around her. Regardless, her work, including that which pertains to elasticity, 

has been used in further developing mathematics research for the past several decades.  

While Sophie Germain’s contributions were significant to the field of elasticity, she did 

not receive the credit she was due. The most egregious example of this took place when the 

Eiffel Tower was built. One of the most important components in constructing the famous 

French landmark was an understanding the elasticity of metals. However, when recognition was 

given to those that had contributed by inscribing their names on the base of the tower, Germain’s 

name was nowhere to be found. H. J. Mozans commented on this 24 years after the opening of 

the Eiffel Tower: “Was [Germain] excluded from this list for the same reason that Agnesi was 

ineligible to membership in the French Academy – because she was a woman? It would seem so. 

If such, indeed, was the case, more is the shame for those who were responsible for such 

ingratitude toward one who had deserved so well of science, and who by her achievements had 

won an enviable place in the hall of fame” [18]. 
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Along with her work in mathematics, Germain had also developed an interest in 

philosophy and continued her work in both until her death in 1831. Doctors diagnosed Germain 

with breast cancer in 1829, and despite her suffering and the battles of France’s July Revolution 

being fought around her, she continued to work for the last two years of her life and passed away 

on June 27th, 1831 at the age of 55. She died before ever having the chance to meet her long-term 

mentor Gauss. However, he made sure that Germain was honored with an honorary degree from 

the University of Gottingen. Forty-four years later, the same institution granted a PhD in absentia 

to Sonya Kovalevskaya. 

 Sonya Kovalevskaya was born January 15, 1850 in Moscow Russia to Vasilii Korvin-

Krukovskii and Elizaveta Shubert [8]. As the middle child stuck between her older sister, Aniuta, 

and younger brother, Fedya, she suffered as many do from a sense of inadequacy. However, 

from a young age, she showed promise in the area of mathematics. Stories of her initial 

encounters with mathematics tell of her Uncle Peter who spoke to her about mathematics, and 

multiple sources recount the wallpapering of her childhood room with lithographed notes from 

an integral calculus course by Ostrogradsky [2]. Unlike Sophie Germain’s parents, 

Kovalevskaya’s were supportive of their daughter’s curiosity where mathematics was concerned.   

 As she grew up, Kovalevskaya, along with her sister, became interested in political, 

social, and cultural radicalism. In particular, the movement that Sonya and Aniuta supported was 

based on the burgeoning philosophy of nihilism and rejected all forms of authority including that 

of the church, state, and family. Nihilist philosophy promoted equality for women and breaking 

free of one’s parents’ grasp, especially in order to pursue an education and career that could have 

an impact on society. Pursuing equality and a better education is a noble goal, and yet the 
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negative reputation that an association with nihilism could cast upon an individual outweighed 

these positives. 

 However, the method by which women were advised to achieve freedom from their 

parents was alluring to Kovalevskaya who had a desire to pursue a university education but lived 

in Russia which, like France, excluded women from studying at universities. This situation was 

further complicated by Russian rules that young women could not travel alone without the 

written consent of their fathers or husbands, and most fathers would not agree to let their 

daughters go abroad in order to receive a higher education. This was also true of Sonya’s parents. 

Generally, these young women would gain their independence by legally marrying a man who 

was also a nihilist and having him give consent for them to go study in another country. 

Following this pattern, Sonya tricked her father into letting her marry Vladimir Kovalevskaya 

despite her older sister being unmarried [11]. After six months living in St. Petersburg, the 

couple moved to Heidelberg, Germany and Kovalevsky’s sister, Aniuta, and friend, Iulia 

Lermontova, soon joined them.  

 While studying in Heidelberg, Kovalevskaya made connections with famous scientists 

and mathematicians such as Hermann von Helmholtz, Paul DuBois-Raymond, and R. Wilhelm 

Bunsen. This was necessary in order for her to be able to study because the school required her 

to get permission from each professor to attend their class, and she did so, earning the respect of 

her professors [8]. Furthermore, the connections made through this admissions process, in 

addition to others that she would make as her education progressed, led to her being a key 

mediator in later interactions within the European mathematical community. While she did well 

during her time in Heidelberg, Kovalevskaya only spent three semesters there before moving to 

Berlin for the next three years to study under Weierstrass with whom she would continue to 
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collaborate for the rest of her life. Originally, Weierstrass was hesitant to take her on as a student 

despite glowing recommendations from her former professors. The university at Berlin did not 

accept female students, and frankly, he doubted her mathematical abilities. However, after she 

impressed him with her work on a problem set which he had given her as a test, Weierstrass 

accepted Kovalevskaya as a private student [11]. 

 By the spring of 1874, Kovalevskaya had written three doctoral dissertations on a proof 

of the Cauchy-Kovalevskaya Theorem, the reduction of abelian integrals to elliptic integrals, and 

the shape of Saturn’s rings. Her professors, recognizing her talent, helped her to petition 

Gottingen University for a doctorate in mathematics, which she received in absentia in the spring 

of 1874. In the fall of that year, Sonya and Vladimir went home to Russia with the goal of 

teaching at a university there. However, they had difficulty due to the nature of nihilist politics, 

which at this point often promoted terrorism and assassination. At this time, they consummated 

their marriage, which had been platonic up to that point, and conceived a daughter whom they 

nicknamed Fufa. Kovalevskaya took the next several years off in order to raise her daughter and 

pursue her love of creative writing.  

 After her five-year hiatus, Kovalevskaya got back in touch with Weierstrass and worked 

on reviving her mathematical career. This return to mathematics kept her busy as her marriage 

deteriorated. While she seemed to be climbing back up the ladder of academia, Vladimir’s poor 

financial decisions were catching up to him, and he eventually committed suicide three years 

after their separation in 1880. Meanwhile, Mittag-Leffler had been fighting the administration at 

the university in Stockholm to hire Kovalevskaya, and by 1884, she began lecturing in Sweden. 

Within the year, she was promoted to a position equivalent to that of an assistant professor.  
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 In 1888, her work on the rotation of a rigid body around a fixed point was recognized by 

the French Academy of Sciences with the Prix Bordin. Known today as Kovalevskaya’s top, this 

is the third and most difficult problem of its kind. Euler and Lagrange had already solved the first 

two. Euler’s problem considered a body with a center of mass not at the center of the body but 

within the rotational axis, and Lagrange’s focused on a body rotating about its center of mass 

which was both at the center of the body and on the axis of rotation. Kovalevskaya’s top had a 

center of mass not located at the center of the body or on the axis of rotation.  

 The top which Kovalevskaya considered has principal moments of inertia (𝐼1, 𝐼2, 𝐼3) such 

that 𝐼1 = 𝐼2 = 2𝐼3 and 𝐼3 = 1, center of mass (𝑥0,𝑦0,𝑧0) such that 𝑦0 = 𝑧0 = 0 [9]. 

Kovalevskaya solved this problem using Newton’s Second Law which states that “the 

acceleration of an object is directly proportional to the net force acting on it and inversely 

proportional to its mass” [17]. However, another method exists for solving more complex cases 

like Kovalevskaya’s top [13]. Instead of applying Newton’s Second Law, one can use 

Hamilton’s Variational Principle: 

Hamilton’s Variational Principle: The motion of the system from time 𝑡1 to 

time 𝑡2 is such that the line integral (called the action or the action integral),  

𝐼 = ∫ 𝐿 𝑑𝑡
𝑡2

𝑡1

 

where 𝐿 = 𝑇 − 𝑉, has a stationary value for the actual path of the motion.  

Here 𝑳 represents the Lagrangian while 𝑻 and 𝑽 are the object’s kinetic and potential energies 

respectively. Therefore, 𝐿 is a function of the object’s position 𝒒, velocity 
𝒅𝒒

𝒅𝒕
 or 𝒒̇, and time 𝒕. 

Because the value for the path of motion remains stationary between 𝑡1 and 𝑡2, 𝑑𝐼 = 0. This 
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requires that the net force for the scenario be conservative. With these assumptions made, one 

can derive the equation 

𝑑

𝑑𝑡
 
𝜕𝐿

𝜕𝑞̇
 – 

𝜕𝐿

𝜕𝑞
= 0. 

 The movement of a Kovalevskaya top can be described in terms of a change in the 

Eulerian angles between a stationary system and the rotational system of the top, also known as 

the body system. Euler angles describe three angles of rotation [5]. One rotation about the 𝑧- axis 

gives a new set of intermediate axes 𝜉, 𝜂, and 𝜁 that correspond to the 𝑥, 𝑦, and 𝑧 axes 

respectively. The second rotation takes place about the 𝜉 axis producing a second set of 

intermediate axes 𝜉 ’, 𝜂’, and 𝜁’ . As the intersection between the 𝑥𝑦 and 𝜉 ’𝜂’ planes, 𝜉 ’ is referred 

to as the line of nodes. Finally, the system is rotated about the 𝜁’ axis to produce a coordinate 

system with axes 𝑥 ’, 𝑦 ’, and 𝑧 ’. The angles formed by each of these rotations are 𝝓, 𝜽, and 𝝍 

respectively. 𝝓̇ is the processional velocity of the top as the center of mass moves around the 

stationary axis of rotation 𝑧, 𝜽̇ is the tipping velocity of the top as it bobs up and down, and 𝝍̇ is 

the rotational velocity of the top about its axis of rotation 𝑧 ’ [13].  

 Each of these rotations can be expressed as matrices D, C, and B respectively where 

 

𝐷 = [
cos 𝜙 sin 𝜙 0

− sin 𝜙 cos 𝜙 0
0 0 1

] 

 

𝑪 = [
1 0 0
0 cos 𝜃 sin 𝜃
0 − sin 𝜃 cos 𝜃

] 

 

𝑩 = [
cos 𝜓 sin 𝜓 0

− sin 𝜓 cos 𝜓 0
0 0 1

]. 
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Therefore, the changes in position can be expressed by  

𝜉 = 𝑫𝑥, 

𝜉 ’ = 𝑪𝜉, 

𝑥 ’ = 𝑩𝜉 ’. 

 

 

The full transition from 𝑥 to 𝑥 ’ can be represented as 

𝑥 ’ = 𝑩𝑪𝑫𝑥. 

The matrix multiplication 𝑩𝑪𝑫 produces the matrix A such that  

𝑥 ’ = 𝑨𝑥. 

with the matrix 𝑨 defined as 

𝑨 = [
cos 𝜓 cos 𝜙 − sin 𝜓 cos 𝜃 sin 𝜙 cos 𝜓 sin 𝜙 + sin 𝜓 cos 𝜃 cos 𝜙 sin 𝜓 sin 𝜃

− sin 𝜓 cos 𝜙 − cos 𝜓 cos 𝜃 sin 𝜙 − sin 𝜓 sin 𝜙 + cos 𝜓 cos 𝜃 cos 𝜙 cos 𝜓 sin 𝜃
sin 𝜃 sin 𝜙 − sin 𝜃 cos 𝜙 cos 𝜃

]. 

Figure 1. The rotations that define Eulerian angles [5] 
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 The overall angular velocity 𝝎 can be defined as the sum of the individual velocities 

𝜔𝜙, 𝜔𝜃, and 𝜔𝜓. These angular velocities are not all in terms of the 𝑥 ’𝑦 ’𝑧 ’ system, but the 

components of each of them can be rotated to express the total angular velocity in terms of the 

body system by using the matrices defined above. 𝜔𝜙 is in the 𝑧 direction, so it must be 

multiplied by 𝑨. 𝜔𝜃 is in the 𝜉 direction which is the same as the 𝜉 ’ axis, and therefore, only 

needs to be multiplied by 𝑩. 𝜔𝜓 is already in the 𝑧 ’ direction, so no transformation is necessary. 

The sum of the vectors given by these transformations will produce equations for the 

𝑥 ’, 𝑦 ’, and 𝑧 ’ components of 𝜔𝑏, the total angular velocity of the body system. 

 The vectors for 𝜔𝜙, 𝜔𝜃, and 𝜔𝜓 can be written as  

𝝎𝝓 = [
0
0
𝜙̇

]                                

 𝝎𝜽 = [
𝜃̇
0
0

]                                

 𝝎𝝍 = [
0
0
𝜓̇

]. 

So,  

(𝝎𝒃)𝝓 = 𝑨𝝎𝝓 

and 

𝑨𝝎𝝓 = [
cos 𝜓 cos 𝜙 − sin 𝜓 cos 𝜃 sin 𝜙 cos 𝜓 sin 𝜙 + sin 𝜓 cos 𝜃 cos 𝜙 sin 𝜓 sin 𝜃

− sin 𝜓 cos 𝜙 − cos 𝜓 cos 𝜃 sin 𝜙 − sin 𝜓 sin 𝜙 + cos 𝜓 cos 𝜃 cos 𝜙 cos 𝜓 sin 𝜃

sin 𝜃 sin 𝜙 − sin 𝜃 cos 𝜙 cos 𝜃
] [

0

0

𝜙̇
]. 

Therefore,  

(𝝎𝒃)𝝓 = [

𝜙̇ sin 𝜓 sin 𝜃

𝜙̇ cos 𝜓 sin 𝜃

𝜙̇ cos 𝜃

]. 
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For the second transformation, 

(𝝎𝒃)𝜽 = 𝑩𝝎𝜽 

and 

𝑩𝝎𝜽 = [
cos 𝜓 sin 𝜓 0

− sin 𝜓 cos 𝜓 0
0 0 1

] [
𝜃̇
0
0

]. 

So, 

(𝝎𝒃)𝜽 = [
𝜃̇ cos 𝜓

−𝜃̇ sin 𝜓

0

]. 

 

Because 𝜔𝜓 is already in the 𝑧 ’ direction, 

(𝝎𝒃)𝝍 = 𝝎𝝍 = [
0
0
𝜓̇

]. 

Thus, the total angular velocity with respect to the axes of the body system is 

𝝎𝒃 = (𝝎𝒃)𝝓 + (𝝎𝒃)𝜽 + (𝝎𝒃)𝝍. 

Substituting in the matrices for (𝝎𝒃)𝝓, (𝝎𝒃)𝜽, and (𝝎𝒃)𝝍, 

𝝎𝒃 = [

𝜙̇ sin 𝜓 sin 𝜃

𝜙̇ cos 𝜓 sin 𝜃

𝜙̇ cos 𝜃

] + [
𝜃̇ cos 𝜓

−𝜃̇ sin 𝜓
0

] + [
0
0
𝜓̇

] = [

𝜙̇ sin 𝜓 sin 𝜃 + 𝜃̇ cos 𝜓

𝜙̇ cos 𝜓 sin 𝜃 − 𝜃̇ sin 𝜓

𝜙̇ cos 𝜃 + 𝜓̇

]. 

Therefore,  

(𝝎𝒃)𝑥’ = 𝜙̇ sin 𝜓 sin 𝜃 + 𝜃̇ cos 𝜓 

(𝝎𝒃)𝑦’ = 𝜙̇ cos 𝜓 sin 𝜃 − 𝜃̇ sin 𝜓 

(𝝎𝒃)𝑦’ = 𝜙̇ cos 𝜃 + 𝜓̇. 

 With respect to these velocities, the Lagrangian for the system is 
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𝐿 = 𝑇 − 𝑉 

where 𝑇 is the kinetic energy from the processional, tipping, and rotational motion of the top 

with respect to each of the three body axes, 𝑥 ’, 𝑦 ’, and 𝑧 ’, and 𝑉 is the potential energy due to 

gravity working on the system. Therefore, 

𝐿 =
1

2
𝐼1(𝜔𝑏)

𝑥’
2 +

1

2
𝐼2(𝜔𝑏)

𝑦’
2 +

1

2
𝐼3(𝜔𝑏)

𝑧’
2 − 𝑀𝑔ℎ. 

Remembering the definition of the Kovalevskaya top, 𝐼1 = 𝐼2 = 2𝐼3, and 𝐼3 = 1 which means 

that 

𝐿 = (𝜔𝑏)
𝑥’
2 + (𝜔𝑏)

𝑦’
2 +

1

2
(𝜔𝑏)

𝑧’
2 − 𝑀𝑔ℎ. 

The height of the center of mass at any given point in the top’s movement corresponds to the 

tipping angle, so 

ℎ = 𝑙 cos 𝜃 

where 𝑙 is the distance from the bottom tip of the top to the position of its center of mass along 

the 𝑧 ’ axis, and 

𝐿 = (𝜔𝑏)
𝑥’
2 + (𝜔𝑏)

𝑦’
2 +

1

2
(𝜔𝑏)

𝑧’
2 − 𝑀𝑔𝑙 cos 𝜃. 

Plugging in the values for the 𝑥 ’, 𝑦 ’, and 𝑧 ’ components of 𝜔𝑏, 

𝐿 = (𝜙̇ sin 𝜓 sin 𝜃 + 𝜃̇ cos 𝜓)2 + (𝜙̇ cos 𝜓 sin 𝜃 − 𝜃̇ sin 𝜓)2 +
1

2
(𝜙̇ cos 𝜃 + 𝜓̇)2 − 𝑀𝑔𝑙 cos 𝜃 

which simplifies to 

𝐿 = 𝜃̇2 + 𝜙̇2 sin(𝜃)2 +
1

2
(𝜓̇2 + 2𝜙̇𝜓̇ cos 𝜃 + 𝜙̇2 cos(𝜃)2) − 𝑀𝑔𝑙 cos 𝜃. 

This form of the Lagrangian can now be used to find the equations of motion using the 

Hamiltonian Variational Principle. 
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 Remembering the equation 
𝑑

𝑑𝑡
 

𝜕𝐿

𝜕𝑞̇
 – 

𝜕𝐿

𝜕𝑞
= 0, solve for 𝑞 = 𝜙, 𝜃, and 𝜓. The resulting 

equations will be equations of motion for Kovalevskaya’s top. Starting with 𝑞 = 𝜙, one must 

find 
𝑑

𝑑𝑡
 

𝜕𝐿

𝜕𝜙̇
 and 

𝜕𝐿

𝜕𝜙
. 

𝜕𝐿

𝜕𝜙̇
= 2𝜙̇ sin(𝜃)2 + 𝜙̇ cos(𝜃)2 + 𝜓̇ cos 𝜃, 

so  

𝑑

𝑑𝑡
 
𝜕𝐿

𝜕𝜙̇
= 2𝜙̈ sin(𝜃)2 + 4𝜙̇𝜃̇ sin 𝜃 cos 𝜃 + 𝜙̈ cos(𝜃)2 − 2𝜙̇𝜃̇ cos 𝜃 sin 𝜃 + 𝜓̈ cos 𝜃 − 𝜓̇𝜃̇ sin 𝜃. 

Also, 

𝜕𝐿

𝜕𝜙
= 0. 

Thus,  

𝜙̈ = −
4𝜙̇𝜃̇ sin 𝜃 cos 𝜃 + 𝜙̈ cos(𝜃)2 − 2𝜙̇𝜃̇ cos 𝜃 sin 𝜃 + 𝜓̈ cos 𝜃 − 𝜓̇𝜃̇ sin 𝜃

2 sin(𝜃)2
. 

Solving for 
𝑑

𝑑𝑡
 

𝜕𝐿

𝜕𝜃̇
 and 

𝜕𝐿

𝜕𝜃
, 

𝜕𝐿

𝜕𝜃̇
= 2𝜃̇, 

so 

𝑑

𝑑𝑡
 
𝜕𝐿

𝜕𝜃̇
= 2𝜃̈, 

and 

𝜕𝐿

𝜕𝜃
= 𝜙̇2 sin(𝜃) cos(𝜃) + (𝑀𝑔𝑙 − 𝜙̇𝜓̇) sin(𝜃). 

Thus, 

𝜃̈ =
𝜙̇2 sin(𝜃) cos(𝜃) + (𝑀𝑔𝑙 − 𝜙̇𝜓̇) sin(𝜃)

2
. 
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Finally, when 𝑞 = 𝜓, 

𝜕𝐿

𝜕𝜓̇
= 𝜓̇ + 𝜙̇ cos 𝜃, 

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝜓̇
= 𝜓̈ + 𝜙̈ cos 𝜃 − 𝜙̇𝜃̇ sin 𝜃, 

and 

𝜕𝐿

𝜕𝜓
= 0. 

Thus, 

𝜓̈ = 𝜙̇𝜃̇ sin 𝜃 − 𝜙̈ cos 𝜃. 

The equations for 𝜙̈, 𝜃̈, and 𝜓̈ define the motion of the top with respect to the Eulerian angles of 

the body system. Kovalevskaya’s solution, which included the integration of hyperelliptic 

quadratures  and abelian functions, was so beautiful that the award for her work was increased to 

match the caliber of work done. 

 Three years after receiving the Prix Bordin for her work on the rotation of a rigid body 

around a fixed point Kovalevskaya died of pneumonia at the age of 41. While she was never able 

to achieve her ultimate goal of teaching at a university in Russia, she was given a position as a 

corresponding member of the Imperial Academy of Sciences. Kovalevskaya died at the peak of 

her mathematical journey, having left an undeniable mark on the European mathematics 

community. 

 Germain and Kovalevskaya gave themselves wholeheartedly to their pursuits of 

mathematics, fighting for their places in mathematical history, and their efforts were rewarded 

despite the views of their societies. Both Sophie Germain and Sonya Kovalevskaya greatly 

influenced mathematics through their own work and collaborations with their mathematical 
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contemporaries. Though neither was able to realize their goals fully because of societal prejudice 

both inside and outside academia, they did make the most of the opportunities that they were 

able to find. Today, mathematical concepts and theorems carry their names, and though their 

stories may not be well known, these women led extraordinary lives that prove that women have 

a place in mathematics.  
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