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1 Introduction

Pervading society is an almost unanimous conception of science, and particularly mathe-

matics, as the branch of learning to which utter certainty of deduction can uniquely be ascribed.

When it is considered at all, scientific progress is seen as essentially linear, consisting of the con-

tinual shedding of unscientific misconceptions and the straightforward constructing of a body of

mathematical and scientific knowledge about reality [46]. Though unwonted perspicacity may

quicken the rate of development, it is plain that it can achieve no basic change in the under-

standing of science itself. This Platonic interpretation of mathematics as a body of transcendent,

incontrovertible truth that is gradually unfolded to mankind by the penetrating intellect of its

scholars is the very ideal that first drew many mathematicians to their chosen profession; never-

theless, it was shaken to its core by Thomas Kuhn’s Structure of Scientific Revolutions (1962).

Against all conventional wisdom, Kuhn postulated that the history of science is characterized

by a progression of paradigm shifts, in which scientists’ very understanding of the nature of

science changes [32]. Not only does this Kuhnian theory of scientific revolutions describe such

events as the discovery of atoms, but it has also been alleged to apply to mathematical develop-

ments such as the process of the legitimization of irrational numbers [21]. Still, is it not worse

than misguided to claim revolutionary change in mathematics, which is never invalidated but

instead expanded? In light of the division this question causes among the greatest minds in

mathematics, either veritably recondite acumen or patent arrogance would be requisite to any

attempt to bring resolution to the issue. Nonetheless, an inductive, creative approach holds

strong potential to shed fresh light on the relevance of revolutions to mathematics.

2 History of the Debate

In order to comprehend the current dialogue on the pertinence of revolutions to mathematics,

it is necessary to attain a broad understanding of the genesis of the debate. The concept of

revolutions in the history of knowledge first came into vogue through the work of Thomas Kuhn

[8]. Investigating the historiography of earlier historians of science such as Alexandre Koyré and

comparing it to that of the current scientific orthodoxy, Kuhn was intrigued to see that while the
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latter looked to history to find the origins of current knowledge, the former in far more interesting

fashion traced the evolution of human understanding of science [32]. Noticing the radical shifts in

scientific thought that are apparent in Koyré’s history but invisible in the other, Kuhn conceived

of a new perspective on the development of science. Against the prevailing presumption that

scientific progress occurs gradually as the result of the accumulated contributions of individuals,

Thomas Kuhn propounded the notion that such seasons of “normal science” are periodically

interrupted by great breakthroughs in human understanding, or “paradigm shifts,” that alter

the very way a subject is perceived [32]. These revolutions inaugurate a new state of awareness

that is incommensurable with the previous way of thought; that is, the two paradigms are not

comparable, because the very frame of reference has changed [41]. Each paradigm in a given

field, such as geocentrism or Euclidean geometry, is no less scientific and rational than the

one that succeeds it [31]. Nevertheless, new insights, cultural factors, and the accumulation of

perceived violations of the accepted order lead to a reconceptualization of the entire discipline.

Hence, the very model of science itself changes continually.

Rather predictably, the initial reception given to this new historiographical perspective was

less than enthusiastic. As is reasonable given the fierce methodological disputes in the so-

cial sciences, many in that sphere of study showed interest when The Structure of Scientific

Revolutions was published; in contrast, the scientific and philosophical response to Kuhn was

overwhelmingly hostile [32]. Though he had previously expressed ideas that could be viewed

as proto-Kuhnian, the eminent scientific philosopher Karl Popper immediately expressed vehe-

ment disapproval of Kuhn’s thesis of incommensurability, rejecting the perceived implication

that scientific “progress” may simply be reactionary, almost random, movement away from one

framework into another and not evolution towards truth [44]. Imre Lakatos concurred, writing

that in Kuhn’s work changes in scientific thought are attributed to “mob psychology” [40]. Na-

ture labeled Kuhn and his colleague Paul Feyerabend “the worst enemies of science,” and more

purely philosophical works, such as those of Dudley Shapere and Israel Scheffler, deplored the

support that Kuhn seemed to lend to epistemological relativism, despite Kuhn’s denunciation

of this reading of his treatise [41, 40]. Meanwhile, Kuhn’s language of “paradigm shifts” rapidly
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insinuated itself into history, business, and nearly every field other than science, much to his

mortification; in Kuhn’s view, his contribution had been to incorporate ideas common in those

fields into the history of science [40]. Even in the light of these perceived failures, however,

The Structure of Scientific Revolutions has performed a vital function, provoking into existence

the study of the historiography of science [11]. Indeed, despite highly negative initial reactions,

and despite persistent universal condemnations of Kuhn’s doctrine of incommensurability, his

wider theory came to be seen as broadly useful. By means of such works as Bernard Cohen’s

Revolution in Science (1985), Kuhnian paradigm shifts have become a mainstream element of

historiographic analysis in science, though the debate is far from over [3]. Still, can it be seriously

hypothesized that such revolutions are a significant force in mathematical history? Perhaps a

pair of case studies will enable more satisfactory elucidation of this enigma.

3 Deduction in Greece

Even the most cursory study of Greek mathematics, especially in the context of other

ancient mathematics, induces a startling realization: while absent in essentially every other

contemporary society, the concept of proof was apparently integral to Greek mathematics from

the very beginning [38]. What was the nature of this fundamental difference in mathematical

methodology? Prior to the advent of classical Greece, in regions such as Egypt, Mesopotamia,

and China, mathematics was usually perceived primarily as a computational tool for surveying,

accounting, and similar pursuits [19]. Even when mathematics was studied for its own sake,

the emphasis was on the result and not on its justification.1 In contrast, though computational

activity still took place in Greece, Greek mathematicians primarily endeavored not to find

methods to solve practical problems but rather to derive the truth of mathematical propositions.

To the Greeks, deduction was pivotal; the goal of mathematics was the demonstration of truths

about geometrical figures and rational numbers, and the correct methodology for the attainment

of this goal was proof from first principles [28].

1One segment of the Egyptian Rhind papyrus reads as follows (omitting units): “Method of calculating a
circular area of [diameter] 9; What is its amount as area? You shall subtract its 1/9 as 1, while the remainder
is 8. You shall multiply 8 times 8. It shall result as 64” [27, p. 29].
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How did this perception of the methods and ends of mathematics, so different from that

in the rest of the world and so indispensable to the rise of Western mathematics, develop in

Greece? Unfortunately, the most generous characterization of present historical knowledge of

this vital era is that it is dubious, due to the impermanent media on which the Greeks chose

to record their discoveries [7]. The earliest influential Greek mathematician of whom there still

remains a record is Thales of Miletus (c. 600 BCE), who reputedly brought his knowledge of the

subject from Egypt and is commonly credited with the demonstration of five basic geometrical

truths, including the fact that a circle is bisected by any diameter [18]. It would seem, then,

that the Greek deductive approach and focus on abstraction was present from the very birth

of Greek mathematics [6]. Since none of the works of Thales are extant, it is impossible to

ascertain the verity of this claim; in fact, many historians of mathematics consider it unlikely

that Thales accomplished anything approaching rigorous proof [24]. Nonetheless, it is clear that

his successors, including the Pythagoreans, Hippocrates, and Eudoxus, followed as one in his

footsteps, continuing the process of examining mathematics with logical rigor and abstracting it

from everyday problems [35]. This approach reached its climax in the creation of the Elements

of Euclid, the earliest extant major Greek mathematical work [17]. Though in China, India,

and elsewhere mathematicians would indeed develop concepts of proof and attempt to show the

truth of certain mathematical results, no mathematician in another culture ever accomplished

the rigorous deductive construction of the whole of known geometrical truth from a set of self-

evident axioms, as did Euclid, providing a foundation for mathematical inquiry that would

remain useful for thousands of years [6].

While it is possible to overstate the significance of the Greek contribution to mathematics—

for instance, not all of Euclid’s attempts at proof were strict successes—it is at least equally

undesirable to miss the revolutionary nature of Greek mathematics. What was the singularity

that provided the impetus for the Greek transformation of mathematics from a computational

tool to an abstract, axiomatic, and self-justifying field of study? The simplest answer, and

perhaps the most correct, is that by approaching mathematics much as they did philosophy,

the Greeks endeavored to subject all results to rigorous proof; this method culminated in the
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cohesive, axiomatic system unfolded in Euclid’s Elements [29]. In reality, such a characterization

may be somewhat disingenuous. Greek philosophy and mathematics did not usually coexist to

a significant degree in one individual. Additionally, much of the development of the deductive

foundation of Greek mathematics occurred before the philosophers Plato and Aristotle estab-

lished syllogistic logic’s centrality to philosophy, undermining claims of causality in the opposite

direction [43, 35]. On the other hand, the originator of Greek mathematics, Thales of Miletus,

also generated an influential philosophical school, and Plato promoted geometry as an integral

ingredient of his quadrivium, insisting that it be taught at his Academy and famously inscribing

over its door, “Let none ignorant of geometry enter here” [7, 2]. Indeed, as Euclid, Archimedes,

and Apollonius all worked well after Plato and Aristotle, significant influence of the latter upon

the former is almost certain [38]. For modern scholars so far removed from that era, confident

disentanglement of these threads is unattainable. Nevertheless, it is apparent even from this

overview that though mutually reinforcing interaction occurred between deduction in mathe-

matics and philosophy later in Greek history, emphasis on rigorous logical analysis in Greek

mathematics developed before its counterpart in philosophy [6]. An innovation in philosophy

did not spread to mathematics; instead, deduction seems to have developed independently in

both, and in a way that was almost invisible to the Greeks themselves [24]. Logic was prac-

ticed and abstraction performed because in that culture it was apparently unthinkable that

they would not be. Possibly because of the existence of a Greek class structure that supplied

extensive leisure for reflection, comparable to that in early Virginia or pre-revolution France, it

seems that the Greek elite applied deduction indiscriminately, unaware of the pioneering nature

of such analysis [29].

4 Analytic Geometry

Despite the strongly suggestive nature of this example, it is judicious to examine another,

the Cartesian genesis of analytic geometry. As has been implied, it would be difficult not to see

the Greek transformation of mathematics into an abstract, axiomatic, and proof-based subject

as revolutionary, if the word be used in anything like its colloquial sense. In the hands of the
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Greeks, humankind’s very understanding of the nature of mathematics was transfigured; how-

ever, was this instance of shifting paradigms a one–time event, or do such revolutions pervade

mathematical history? The case of the genesis of analytic geometry may illuminate the issue. In

1637, René Descartes transfigured mathematical thought with the treatise La Géométrie, which

he published as an addendum to his famed Discours de la Méthode [15, 16]. In La Géométrie,

Descartes astutely linked the hitherto distinct realms of algebra and geometry, defining curves

by means of mathematical formulæ [30]. Previously, properties of shapes such as lengths, angles,

and areas had commonly been quantified and related by means of equations; well-known exam-

ples include the formula for circular area and the Pythagorean theorem. Leaping far beyond this,

Descartes and his early followers conceived of geometrical figures like parabolas as being defined

in terms of a coordinate system and generated by equations [19]. Rather than understanding

equations as being in terms of fixed unknowns, the new analytic geometry allowed unknowns to

be variables, taking on every value in a specified range to generate a graphical figure. Descartes’

breakthrough changed the course of mathematical history forever; by applying algebraic analysis

to geometry and enabling the visualization of algebraic problems in terms of curves, he laid the

foundation necessary for Leibniz and Newton’s construction of calculus [39].

Although Descartes’ discovery was of a specific mathematical technique, in contrast with

the Greek metamathematical contribution, it appears just as plainly revolutionary. However,

analytic geometry did not spring fully formed from the mind of Descartes; mathematicians

throughout history, including Menaechmus, Apollonius, and Nicole Oresme, had reached the

very brink of anticipating Descartes’ discovery, sometimes even deriving the equations of curves

in pseudo–coordinate systems but never deriving curves from equations [5, 1, 42]. Additionally,

Descartes’ friend Pierre de Fermat independently developed some of the most important elements

of the subject almost simultaneously [39]. In a work that remained unpublished during Fermat’s

lifetime but was circulated in 1636 within a small community of French mathematicians that

included Descartes, just before Descartes’ own publication of La Géométrie but after Descartes

had documented his discovery in a 1628 letter, Fermat introduced a core concept of analytic

geometry: “Whenever in a final equation two unknown quantities are found, we have a locus,
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the extremity of one of these describing a line, straight or curved” [5, p. 75]. Though he failed

to formulate the modern concept of Cartesian coordinates, Fermat thus pioneered the study of

curves as defined by indeterminate equations in two variables [5]. On the other hand, even though

the modern concept of coordinates was implicit in his work and he acknowledged the possibility of

using his method to analyze indeterminate equations, Descartes understood the primary utility

of the analytic geometry he introduced to be the solving of determinate equations [6]. While

Fermat pursued the aims that would come to characterize analytic geometry, he was unable

to fully shed traditional methodology; conversely, Descartes developed the methods of analytic

geometry much more comprehensively while retaining the ends of previous mathematicians [5].

Hence, neither Descartes nor Fermat was able to perform the synthesis that would give the

discipline its modern form. In fact, as Fermat’s work remained unpublished and Descartes’ was

highly cryptic, boasting more than explaining, many years elapsed before the labors of such

men as Frans van Schooten and John Wallis established the meaning, importance, and even

legitimacy of analytic geometry [28].

Why did analytic geometry develop in this way? Though it undermines the revolutionary

nature of the discovery somewhat, it is not surprising that Fermat and Descartes were unable

to fully exploit the possibilities inherent in their pioneering method. Indeed, that portion of the

narrative indicates a key feature of the larger history of analytic geometry. Whereas the Greek

paradigm of mathematical deduction appears to have derived directly from the Greek cultural

system and was thus present in essentially complete form from the beginning as an unconscious

component of Greek mathematics, the development of analytic geometry was a conscious, non–

culturally–induced process and, therefore, was not immediately comprehended in its entirety

even by its originators [5]. Initially, it seems much more difficult to account for the timing of the

discovery of analytic geometry; why, when all but the final step had been taken by geometers as

early as the Greek Menaechmus, did the world of mathematics need to wait for Descartes and

Fermat to make the climactic breakthrough? Academic consensus is that a related development,

that of modern algebraic notation, accounts for the long-delayed, essentially simultaneous, and

independent conception of analytic geometry by two separate mathematicians [28]. Without
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algebraic notation, it makes little sense to generate figures from equations. The truth of this

claim is corroborated by the historical fact that Fermat developed his analytic geometry while

studying Apollonius and François Viète, who were respectively the ancient mathematician who

came closest to analytic geometry and a near-contemporary popularizer of pseudomodern al-

gebraic notation [5]. Further confirmation is found in the fact that Descartes, who carried the

method of analytic geometry even further, did so when he had just completed his other major

mathematical accomplishment, the formulation of algebraic notation in almost exactly modern

form [24]. Evidently, the discovery of analytic geometry occurred just when algebra had ad-

vanced far enough to permit it [6]. Still, another vital factor also seems to have been at work;

as individuals to whom mathematics was a hobby, not a professional pursuit, both Fermat and

Descartes approached mathematics with a fresh eye, uninhibited by the traditional conceptions

of mathematics inculcated by mathematical education. As a result, they were able to transform

mathematics in a way that had been hitherto inconceivable [5, 9].

5 Revolutions in Historiography

Can a synthesis of these two cases shed useful light on the applicability of paradigm shifts

to mathematics? Both developments are indubitably turning points in the history of mathe-

matics, yet the particular details of the formation of Greek abstraction and analytic geometry

differ widely. The Greeks contributed a metamathematical shift, transforming mathematics

from applied computation into an abstract, logical system deduced from axioms and studied

for its own sake. In far less sweeping fashion, Descartes supplied a revolution in mathematical

methodology, intertwining the disciplines of algebra and geometry by defining geometric figures

in terms of algebraic formulæ. Greek abstraction was essentially unconscious, occurring as an

almost necessary consequence of Greek culture; Descartes’ development of analytic geometry

was fully deliberate and the result of forces internal to mathematics, though it did stem from in-

teraction between two disparate fields of mathematics. In consequence, the Greek establishment

of a deductive paradigm of mathematics was simultaneously unprecedented and sudden, while

Descartes’ analytic geometry was much prefigured and highly incomplete. Strangely, Greek
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abstraction was an event that was easily accepted and had no evident individual source, even

though it was one that remained largely local to Greek culture for centuries. In reverse manner,

analytic geometry faced much initial opposition and stemmed directly from two men, Fermat

and Descartes, yet became rapidly global. Apart from the importance of both episodes to

mathematics, only one similarity is readily apparent: both shifts created a new framework that

almost fully superseded the one that had preceded it. Clearly, the construction of a definition

of “revolution” in light of these examples remains difficult. Indeed, considering the disparity of

detail between the two cases, it is far from certain that any veritable commonality exists between

them; perhaps the construct of a “paradigm shift” truly has little relevance to mathematics.

What, then, can be done to remedy this bleak situation?

Yet a third parable, this one of a knotted set of three paradigm shifts, may provide the light

necessary to elucidate the issue.2 The Greeks emphasized deduction in the whole of life just as

they did in mathematics; in particular, Aristotle promoted the application of syllogistic logic to

all fields of inquiry, especially science [45]. Earning for himself the appellation “The Father of

Modern Philosophy,” René Descartes revived and expanded this ideology in the 17th century,

founding the long–standing Western tradition of rationalism, according to which all truth is

attainable through the exercise of human reason and observation [9]. As this philosophy trickled

into mathematical institutions, increasing concern emerged over the strict logical security of the

foundations of mathematics. In consequence, symbolic logic was developed by George Boole and

Gottlob Frege, and multitudes of mathematicians including David Hilbert, Bertrand Russell, and

the Bourbaki group attempted to formalize the logical basis of mathematics [26, 39]. In like

manner, historians of mathematics and science implicitly understood the purpose of their work

to be the chronicling of the essentially linear development of the current conception of science

[4]. However, in the 18th century, David Hume, Immanuel Kant, and G. W. F. Hegel began

a disturbing and contrary school of thought that would end in the philosophy of men such

as Søren Kierkegaard and Friedrich Nietzsche [10]. In short, they challenged the certainty of

human perception and questioned that the application of logic could yield a body of certain truth.

2Unabashed assumption that these events are indeed revolutions is advantageous for the sake of argument.
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By the early 20th century, such thought had infiltrated mathematics [23]. Responding to the

inability of Hilbert and Russell to complete their formalization programs, Alfred Tarski and Kurt

Gödel proved a series of results that revealed the futility of such attempts, demonstrating the

impossibility of proving all true statements in a formal system [48]. Ultimately, in 1962 Thomas

Kuhn applied these philosophical and mathematical findings to the historiography of science,

arguing that periods of “normal science” are punctuated by “paradigm shifts” or revolutions in

which the scientists’ perspective on their discipline itself undergoes radical transformation [32].

In somewhat ironic fashion, the very concept of paradigm shifts was thus generated by a series

of inextricably intertwined revolutions in human understanding, in which rationalism became

qualified by skepticism. Still, how is this relevant to mathematics?

In light of this history, the literature on paradigm shifts in mathematics becomes much

more intelligible. As previously discussed, early reactions to Kuhn’s Structure of Scientific

Revolutions were characterized by vehement denial; philosophers warned of the apparent im-

plication of relativism, and the scientific community deplored the seemingly implicit denial of

scientific progress [40]. Likewise, mathematicians understandably resented Kuhn’s insinuation

that progress science in general and mathematics in particular does not necessarily proceed

through the straightforward application of a deductive process. After all, for centuries or mil-

lennia, mathematicians had made statements like that of Hermann Hankel: “In most sciences

one generation tears down what another has built, and what one has established another un-

does. In mathematics alone each generation builds a new storey to the old structure” [22, p.

49]. Naturally then, in one of the earliest mathematical responses to Thomas Kuhn, Michael

Crowe (1975) postulated that “Revolutions never occur in mathematics” [12, p. 19]. Kuhn,

trained as a physicist, had avoided detailed discussion of mathematics in his landmark treatise;

hence, it was Crowe’s paper that broke the uneasy truce and let loose a flood of controversy

over the nature and existence of revolutions in mathematics [36]. Herbert Mehrtens published

an extensive and thoughtful response to Crowe’s brief thesis in 1976, similarly rejecting the ap-

plicability of Kuhn’s specific theory of the structure of scientific revolutions but arguing in stark

contrast to Crowe that Kuhn’s general insight is indeed crucial to the historiography of mathe-
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matics [37]. To the present day these two seminal viewpoints have shaped the still–unresolved

debate. However, in contrast to Crowe’s early visceral rejection of revolutions, later contribu-

tions such as Joseph Dauben’s (1984) crucial paper have generally come to assume the existence

of revolution–like change in mathematics and have instead debated the usefulness of the word

“revolution,” what it should be taken to mean in mathematics, and how revolutions occur [14].

For instance, the authoritative anthology by Donald Gillies (1992) consists largely of essays re-

garding not the relevance but rather the meaning and importance of mathematical revolutions

[22]. The early critic Michael Crowe himself published a recantation of his previous position in

1988 and has asserted that “the question of whether revolutions occur in mathematics is in sub-

stantial measure definitional” [13, 11, p. 316]. Even more significantly, Crowe recognized that

as previously discussed, “a revolution is underway in the historiography of mathematics” [11,

p. 316]. This truth is made evident by the casual usage of Kuhnian concepts in a broad range

of other respected mathematical works, including those by Raymond Wilder, Paul Feyerabend,

Imre Lakatos, George Lakoff, and Rafael Núñez; description of the traditional view of linear

mathematical progress as näıve “Whig history” has even entered the mainstream of textbooks

on the history of mathematics [47, 20, 33, 34, 25].

6 Inductive Insight

Unexpectedly, the above analysis of the roots of Kuhn’s historiographical perspective reveals

the most productive approach to the question of mathematical revolutions. Taking the historical

viewpoint that the analysis suggests and interpreting the mathematical debate over paradigm

shifts as part of the turmoil that often accompanies a revolution in any field, both the early

misunderstanding of Kuhn’s ideas and the disparity of opinion that persists to this day are far

more understandable. Indeed, this perception brings a glaring deficiency in the mathematical

literature into sharp focus. While scholars engage in protracted and acrimonious discussion over

the definition, exact mechanism, and applicability of revolutions to scientific and particularly

mathematical history, little use of the concept is actually made in historical analysis. The rev-

olution in historiography remains incomplete; though the old paradigm has been rejected, the
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new paradigm remains nascent [46]. Hence, history languishes while historiographers dispute.

If the purpose of mathematical historiography is to compile an understanding of the nature of

mathematical history and how it should be studied, the members of this dialogue should trans-

form it from a debate into a dialectic. Rather than propounding theoretical frameworks of the

nature of revolutions in mathematics and endlessly debating which theory best describes the

data, creating a false dichotomy between theories that each contain a nugget of truth, mathe-

matical historiographers should examine the historical data and create a concept of revolutions

in mathematics that is useful for historical study and explication. As the first step in such a

pioneering program, analysis should focus solely on the suggestion of a utilitarian understanding

of revolutions for the explanation of mathematical history. Recognizing that the historiographi-

cal revolution is not yet complete, and proceeding like Kuhn under the simple assumptions that

mathematical truth exists, that it can be discovered, and that scientific progress does indeed

occur, serious historians of mathematics should bypass the particulars of the present arcane de-

bate and take an inductive approach to revolutions in mathematics [3]. Although arcane issues

such as the question of whether it is in understanding or practice that mathematical revolutions

occur will maintain some relevance, they are not central to the proposed approach. Instead, this

method will result in a fact-driven, contextualized concept of paradigm shifts, one that enables

the application of this potentially fruitful idea of revolutions to history.

How should such a pragmatic understanding of revolutions in mathematics, intended to func-

tion as a tool to understand mathematical history, be produced? Extending Thomas Kuhn’s

rough classification of “normal science” and “paradigm shifts,” it is most useful to simply define

revolutions to be the unit of non–linear, non–normal change in mathematics, the type of progress

unexplained by the traditional cumulative model of mathematical history. Refinement of this

broad formulation may then lead to the generation of informative subtypes of mathematical

revolutions. For instance, both the Greek assimilation of deduction and the Gödelian rejection

of formalism lend themselves to interpretation as revolutions in metamathematics; in both cases,

a change in the philosophy of mathematics altered the entire scope of mathematical activity. A

purely mathematical category of revolutions might include paradigm shifts like those that took
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place when irrational numbers and non–Euclidean geometry were introduced. In this class of

reconceptualization–type revolutions, a new insight radically alters the understanding of preex-

isting mathematical knowledge. Yet another type of revolution in mathematics might encompass

discoveries where the perception of previous knowledge remained the same, yet the discovered

technique largely superseded previous ways of doing mathematics; examples include Descartes’

development of analytic geometry and Newton and Leibniz’s creation of calculus. Clearly, such

categories are neither fully distinct nor all-inclusive, yet they provide fertile ground for further

development and particulary for articulate historical discussion. If the history of mathematical

progress is properly exposited as a mix of revolutionary change and normal accumulation of

knowledge, much can be gained as historians are enabled to discuss both the purely intrinsic

and the paradigmatic value of great mathematical contributions.

The definition of a revolution is not all that is important to the concept’s applicability to

mathematics; it is equally critical that it be understood how and why paradigm shifts do indeed

occur. It is tempting to formulate a narrow conception of the mechanism of revolutions and

espouse it dogmatically. For the purposes of mathematical history, however, it is far more

pragmatic to construct a repertoire of plausible mechanisms whose utility may be compared for

the exegesis of historical episodes. For instance, a revolution in mathematics may be sparked

by a chance discovery, a perceived contradiction or deficiency in the present paradigm, or by a

revised viewpoint imported from the general culture. Examples of such revolutions caused by

these factors include, respectively, the invention of calculus, the birth of analytic geometry, and

the Greek axiomatization of mathematics. Such explanations are plainly not mutually exclusive;

a multiplicity of causes is often evident. The actual historical development of paradigm shifts

varies in like manner. Sometimes the insight is sudden and complete, with little prefigurement.

Other times, for instance in the case of analytic geometry, the crucial method developed very

gradually, and still other times, as in Greece, it is the result of the concerted effort of individuals.

It is not sufficient, however, that a discovery be made; for a revolution to take place, a paradigm

must become widely accepted. How does this happen? Sometimes, the same societal factors that

influenced the shift encourage its acceptance. Often, the new technique is obviously desirable,
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even from within the perspective of the previous paradigm. Occasionally, no conversion does take

place; instead, young mathematicians entering the field are trained in the new paradigm, and

the old one thus gradually disappears. When historians come to recognize the significance of all

of these factors, and of many more as well, their elucidation of the progression of mathematical

history will become much more informative.

7 Conclusion

Just as Descartes and Fermat were able to envision and develop a possibility that no pro-

fessional mathematician had ever glimpsed, so also this undergraduate paper, though far from

competent to compete intellectually with the likes of Karl Popper, Thomas Kuhn, and Imre

Lakatos, has uniquely considered a separate issue that evidently has been too large to be fully

appreciated by those steeped in the lore of the debate. Philosophers and historiographers, so

justifiably fascinated by the debate over the question of paradigm shifts in the history of mathe-

matics, have generated reams of valuable dialogue on the issue but have failed to recollect the end

purpose of historiography and accordingly establish relative consensus on what basic conception

of revolutions can be useful in the writing of mathematical history—for it is evident that in some

manner, both the Greeks and Descartes, among others, instigated a revolutionary change in the

understanding of mathematics. Inspired by Michael Crowe’s recapitulation of his evolving per-

spective on the debate in Gillies (1995), by Paul Feyerabend’s infamous Against Method (1990),

and by the failure of the rationalism–fueled formalistic approach to the foundations of mathe-

matics itself, the unorthodox proposal of a heuristic understanding of mathematical revolutions

based on induction rather than on more traditional deduction from the hypothesized nature of

mathematics itself holds great promise for practical fertility both as an unblazed trail and as an

approach prompted directly by the needs of the historical community. As it is apparent that

the mechanism of mathematical progress is still uncertain, perhaps such analysis will not only

increase humanity’s comprehension of mathematical history, but also provide invaluable insight

into how mathematical discovery itself can be stimulated.
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