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On the Foundations of X-Ray Computed Tomography in Medicine:
A Fundamental Review of the ‘Radon transform’ and a Tribute to Johann Radon

Abstract
Objective: To acknowledge the work and life of the Austrian mathematician Johann Radon, motivated by a his-
torical narrative on the development of the computed tomography scanner. Methods: Information was obtained
from journal articles, textbooks, the Nobel web site, and proceedings from mathematical symposiums. Results:
The computed tomography scanner changed the paradigm of medical imaging. This was a direct result of collabo-
ration between Godfrey Hounsfield and James Ambrose in the 1970s. However, the theoretical basis of computed
tomography had been published by Allan Cormack a decade earlier, and a generalized solution to the problem had
been described by Johann Radon in 1917 (i.e., the ‘Radon transform’). Subsequently, both Hounsfield and Cormack
were recipients of the 1979 Nobel Prize in Physiology or Medicine for their achievements in computed tomography
imaging. Conclusions: An appreciation of the Radon transform serves as a prerequisite to gain deeper insight into
signal processing in computed tomography. Such insight offers opportunities to advance optimization strategies in
health physics relative to computed tomography quality assurance protocols. Advances in Knowledge: As we
close in on the 100 year anniversary of the publication of the Radon transform, a review of the literature reveals that
a wide-ranging treatise on Johann Radon is not available. This paper attempts to correct that oversight.

Key Words: Radon transform; Johann Radon; computed tomography; mathematical modeling.

Part 1. Introduction

When Sir Godfrey Hounsfield (an English-born electrical engineer) introduced his medical x-ray computed
tomography (CT) scanner (in 1971, developed at the British company, Electric & Musical Industries, Ltd.
[1-3]), diagnostic imaging—as a discipline—was liberated from the constraints of single-plane radiography.
More importantly, for the first time, x-ray imaging via the multi-plane CT construct, could be used to view
organs. Thus, the utilization of CT, enabled radiologists to more accurately evaluate a greater number of
diseases and conditions to the betterment of patient treatment planning. Furthermore, it can be said that
the advent of CT renewed a sense of discovery in the field of radiology not felt since its birth, some 75 years
earlier (shortly following Wilhelm Röentgen’s discovery of x-rays in 1895 [4]).

To more fully appreciate the engineering feat of Hounsfield’s work we step back in time, where on October
1, 1971 at Atkinson Morley Hospital,1 a renowned brain surgery center in London, the clinical value of
Hounsfield’s prototype CT scanner—a dedicated head scanner—was demonstrated [5,6]. On that date, the
first CT scan was carried out by Hounsfield and the neuroradiologist Dr. James Ambrose on a middle aged
woman with a suspected frontal lobe tumor. The tumor was surgically removed soon thereafter, and the
surgeon reported that the mass “looked exactly like the picture” [6]. Figure 1 shows the prototype scanner,
a design schematic, and an image from the first scan. Following subsequent brain scans on 10 additional
patients, performed by and validated by Hounsfield and Ambrose, non-invasive examinations of the brain
by way of CT became a decidedly viable option in the radiology armamentarium [2,5-7]. It is notable, also,
that by 1975, technology had advanced to the point where Hounsfield was able to build the first whole-body
CT scanner.

It is often the case in science and medicine that two people work on identical problems, each unaware of
the other person’s efforts or contributions. With respect to the history of CT, this theme occurs twice. First,
unknown to Hounsfield, the theoretical basis for CT had been published in two papers nearly a decade earlier
(the first paper in 1963 and a follow-up paper in 1964) by a South African-born American physicist, Allan
Cormack, who spent nearly an equal amount of time developing the idea [8,9]. Interestingly, Hounsfield and
Cormack relied on different mathematical approaches to the problem; however, the underlying concept was
the same—recovering data lost to attenuated x-rays. In subsequent years, analogous to the honor bestowed
on Röentgen by the Nobel committee, awarding Röentgen with the first Nobel Prize in Physics (in 1901) for
the discovery of x-rays, Cormack and Hounsfield were jointly awarded the 1979 Nobel Prize in Physiology
or Medicine “for the development of computer assisted tomography [10].”

1Atkinson Morley Hospital was founded in 1896 in London, England. During the Second World War a neurosurgery unit

was established which marked the initial step in a course of developments in the hospital’s timeline that eventually led to its
notoriety as a preeminent brain surgery center. Atkinson Morley Hospital remained open until 2003 when the neurosurgery
services were moved to the newly-built Atkinson Morley Wing of St. George’s Hospital (founded in 1733, London, England)
[5,6].
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Notably, although Cormack recognized broader applications for his tomographic solution, that is, he
realized both x- and gamma-rays could be used for imaging and hypothesized that protons could be used
likewise—the historical underpinnings of the problem were not known to him. On this point, we encounter
the second and final occurrence of the aforementioned theme. In Cormack’s 1979 lecture at the Nobel
banquet [11], he asserts:

It occurred to me that in order to improve treatment planning one had to know the distribu-
tion of the attenuation coefficient of tissues in the body, and that this distribution had to be
found by measurements made external to the body. It soon occurred to me that this infor-
mation would be useful for diagnostic purposes and would constitute a tomogram or series
of tomograms, though I did not learn the word “tomogram” for many years. At that time
the exponential attenuation of x- and gamma-rays had been known and used for over sixty
years with parallel sided homogeneous slabs of material. I assumed that the generalization to
inhomogeneous materials had been made in those sixty years, but a search of the pertinent
literature did not reveal that it had been done, so I was forced to look at the problem ab
initio. It was immediately clear that the problem was a mathematical one. . . . Again, this
seemed like a problem which would have been solved before, probably in the 19th Century,
but again a literature search and enquiries of mathematicians provided no information about
it. Fourteen years would elapse before I learned that Radon had solved this problem in 1917.

We learn that the key mathematical technique attributed to the tomographic solution is the so-called “Radon
transform,” named after the Austrian mathematician Johann Radon. Loosely speaking, the technique may
be thought of under the auspices of the Radon problem, and more definitively, as a subfield of Fourier
analysis (which is a subfield of harmonic analysis). Hence, the Radon transform is a mathematical operator
used in signal processing to recover data of a known signal (i.e., the x-ray beam), or in mathematical terms,
a function, passing through a region.

Upon realizing ex post facto that more than half a century earlier Radon tackled a generalized solution,
Cormack grew interested in tracing the lineage of the Radon problem. Ultimately, Cormack was successful in
this quest, and today, we are the beneficiaries of the information he synthesized, thanks to a talk he gave at
a symposium on applied mathematics featuring lectures on CT (held in 1982 by the American Mathematical
Society) [12]. This talk encapsulated Cormack’s research at the turn of that decade (late 1970s to early
1980s) on Radon’s work by means of correspondences with prominent mathematicians and physicists of that
era. In this light, it is remarkable given the utility of the Radon transform (especially the familiarity of
this mathematical operator to engineers in the medical imaging industry [13]), that as we close in on the
centennial anniversary of its publication, a wide-ranging treatise on Johann Radon is not readily available
in the narratives devoted to historical references in mathematics, or similarly, throughout the annals of
radiology.2 Thus, it is the aim of this paper to present the first comprehensive essay on Johann Radon by
means of a three-tiered composition. First, under the broader heading of harmonic analysis, the lineage of
the Radon problem is presented. Next, the life and esteemed career of Johann Radon is explored. Finally, as
the capstone to this paper, a treatment of the Radon transform—ascribed to CT modeling—will be offered
in plain mathematical language.

Part 2. Narrative on Johann Radon: A Historical Perspective

1. Lineage of the Radon Problem

As we trace the lineage of the Radon problem we are guided by Cormack, and in fact, we find ourselves
indebted to his efforts concerning this subject matter. In this context, the reader is referred to Figure 2,
which serves as a roadmap to the following time-line of relevant historical events surrounding the problem,
as adopted from Cormack [12]:

• The first person known to tackle Radon’s problem was the great Dutch physicist Hendrik Lorentz. He
found the solution to the three dimensional problem where a function is recovered from its integrals

over planes. If f̂(p, ~n) is the integral of f over a plane perpendicular to the vector p~n from the origin,

2It is interesting to note that much of Radon’s original works, including his work that is the focus of this exposition, have
only (relatively) recently become available in the English language, as will become apparent throughout this paper.
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and a distance p from the origin, then f at the origin is given by

f(0) = − 1

8π2

∫ (
ϑ2f̂(p, ~n)

ϑp2

)
0

dωn,

where dωn is an element of solid angle in the direction of ~n. Since the origin may be arbitrarily
chosen, the result holds for any point. Interestingly, it is unknown why Lorentz thought of the
problem, or what his method of proof was, for we only know of his work through H.B.A. Bockwinkel.
That is, in a paper written in 1906 by Bockwinkel on the propagation of light in biaxial crystals [14],
he attributed the above equation to Lorentz.

• Following Lorentz came Radon’s famous integral3 in 1917 [15], such that

f(r, φ) =
1

4π2

∫ 2π

0

∫ ∞
−∞

(
−1

t

)
∂

∂l
p(l, θ)dldθ,

where p(l, θ) is the density integral (or ray sum) measured along the ray inclined θ with respect to
a vertical axis and passing within a distance l from the center of the region being scanned. Further,
f(r, φ) is the density at the point with polar coordinates (r, φ) in this region, while t = l− cos(θ−φ)
is the perpendicular distance between the ray and this point. When ray sums in a given projection
are spaced evenly in l, and projections are spaced evenly in θ, a simple reconstruction method can
be found directly from the equation by approximating both integrals by sums and approximating
the partial derivative by an appropriate first difference [16].

• The problem again surfaces in 1925, involving two physicists Paul Ehrenfest and George Uhlenbeck.
In Uhleneck’s paper he credits Ehrenfest for drawing his attention to the results of Lorentz and
suggesting that he generalize it to n-dimensions, which Uhlenbeck did using Fourier techniques [17].
Once again there was no reason given for solving the problem.

• In 1935, in Stockholm, Cramér and Wold4 used the Fourier integral approach to better understand
marginal distributions of a probability distribution in order to infer the distribution itself [18].

Implications to x-ray CT in medicine. As noted by Cormack, marginal distributions
can be considered as projections or views in terms of CT scanning.

• In 1936, in Leningrad, the Armenian astronomer Viktor Ambartsumian provided an elegant mathe-
matical solution5 to a problem posed earlier by Eddington. That is, Ambartsumian determined the
distribution of the spatial velocities of stars from the distribution of their radial velocities obtained
for various regions of the sky. This find was considered of fundamental importance for the kinematics
and dynamics of the galaxy [19].

Implications to x-ray CT in medicine. With respect to Ambartsumian’s solution,
Cormack states, “This is just Radon’s problem in three dimensional velocity space rather
than ordinary space, and Ambartisumian gave the solution in two and three dimensions in
the same form as Radon.” Cormack also points out, “This is the first numerical inversion
of the Radon transform and it gives the lie to the often made statement that computed
tomography would be impossible without computers.” Cormack states that, “Details for
the calculation are given in Ambartsumian’s paper, and they suggest that even in 1936
computed tomography might have been able to make significant contributions to, say,
the diagnosis of tumors in the head.” Reportedly, as Ambartsumian told Cormack—he
[Ambartsumian] was informed about Radon’s results two years after he [Ambartsumian]
published his work.

• In 1947, Szarski and Wazewski describe Radon’s problem by formulating it in terms of a set of
“fonctions cylindrique” (or “cylindrical functions”), and then state the problem consists of finding
whether or not this set of functions tends to a solution.

3In 1986, an English translation of Radon’s 1917 paper (translated by P. C. Parks) appeared in the journal IEEE Transactions
on Medical Imaging, volume 5, number 4, pages 170-176, as titled, “On the Determination of Functions from Their Integral

Values Along Certain Manifolds.”
4Although Cormack originally cited the paper published by Cramér and Wold as the year 1936, search results in the Electronic

Research Archive for Mathematics, maintained by the European Mathematical Society, show an alternative publication of the
same content one year earlier [18], that is to say 1935.

5V. A. Ambarzumian, Mon. Notic. Roy. Astron. Soc. 96, 172 (1936).
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• Finally, in 1956, the electrical engineer and radio-astronomer Ronald Bracewell worked out Radon’s
problem using Fourier and other methods to determine radio emissions from the Sun.

The reader should take note that in the above account of the Radon problem, several references were
made to Fourier methods. In a latter section of this essay (A Derivation of the Radon Transform), further
references to Fourier techniques will be made. Suffice it to say at this time, that in the bigger picture, such
techniques—including the Radon transform itself—fall under the heading of Fourier analysis. Moreover,
Fourier analysis falls under the umbrella of harmonic analysis. The three main subclassifications of harmonic
analysis, according the American Mathematical Society, are observed in Table 1. The reader should note
that the Radon problem, which relates to reconstructing a function from its integral, falls under the second
arm, “Harmonic Analysis in Several Variables,” and within this subclassification, it belongs under “Fourier
and Fourier-Steiltjes transforms and other transforms of Fourier type.”

To transition to the next section of this essay on the life and work of Johann Radon, the two areas of
mathematics that Radon was most interested in, the calculus of variations and functional analysis, are briefly
introduced.

Calculus of Variations: Whereas finding the minimum and maximum of functions is a basic idea in
calculus, in the calculus of variations this idea is expanded to finding the extremas of mathematical
concepts called functionals [20]. Examples include 1) the length of a line of a curve joining two
given points; 2) the area of a surface; 3) moments of inertia of a curve or a surface with respect to
a point or an axis or a plane; and 4) the resistance encountered by a physical body moving with
given velocity through a medium [20]. Such examples have important implications in engineering
and physics.

Functional Analysis: The most important role of functional analysis is that of a mathematical lan-
guage. More specifically, functional analysis became the language of 20th century mathematics (more
precisely its part called analysis) and theoretical physics; much of the subject matter under its um-
brella deals with the convergence of functions [21]. Functional analysis includes but is not limited
to the mathematics of set theory, topology, measure theory, and linear spaces [22].

2. The Life and Work of Johann Radon

Johann Karl August Radon (December 16, 1887 - May 25, 1956) was an Austrian mathematician who
focused his career on the study of analysis. To this end, his dissertation explored aspects of the calculus
of variations, and his collective works laid the foundations of functional analysis [23]. Radon was born in
Tetschen (near Bohemia, in present-day Czech Republic, then part of the Austro-Hungarian monarchy).
He was the only son of Anton Radon and Anna Schmiedekrecht (Anton’s second wife). At preparatory
school in Leitmeritz (in present-day Czech Republic), Radon enjoyed Latin and classical Greek as well as
botany, history, and music; however, his interest in mathematics proved to be the strongest [24]. Following
preparatory school (where he graduated with distinction), Radon began his study of higher mathematics at
the University of Vienna.

In Vienna, Radon studied under Gustav von Escherich (June 1, 1849 - January 28, 1935). Notably, on
par with convictions to promote the development of mathematics in Austria,6 Escherich had a reputation of
impressing upon his students, the works on analysis by Karl Weierstrass [23]. Indeed, today, we recognize
Karl Weierstrass (October 31, 1815 - February 19, 1897) as the “Father of Modern Analysis” [25]. Moreover,
Esherich, like Weierstrass before him, embraced a rigorous definition of the calculus,7 much like that proposed
by Augustin-Louis Cauchy (an early 19th century mathematical intellect). Hence, it is in this age, regarded
by historians as the dawn of the most prolific period in mathematics—in terms of extending our knowledge
of and interactions with the universe, one easily finds the inspiration that 20th century mathematicians drew
upon. Moreover, it was the knowledge which emerged from and transcended this period that significantly
influenced Radon’s decisions to pursue his vocation in the field of analysis. The following chronology provides
a synopsis of Radon’s career.

6Gustav von Escherich and Emil Weyr founded the journal Monatshefte für Mathematik und Physik in 1890, which was

published until 1944. In addition, Gustav von Esherich, together with Ludwig Boltzmann and Emil Müller, founded the

Mathematical Society in Vienna in 1903, later renamed the Austrian Mathematical Society (1948).
7Although calculus was established over 100 years earlier by Gottfried Leibniz and Isaac Newton (ca. 17th-18th centuries),

the credit for our current understanding of this field (that is, calculus more rigorously defined) is most cited with the methods
developed by the mathematician, Augustin-Louis Cauchy (August 21, 1789 - May 23, 1857).
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1910: Dissertation8—Über das Minimum des Integrals
∫ S1

S0
F (x, y, θ, κ)ds, University of Vienna.

1910-1911: University of Göttingen.
1912-1919: Technical University of Vienna.9

1913 Habilitationsschrift—Theorie und Anwendungen der absolut additiven Mengenfunktionen,10

University of Vienna.
• During this period, Radon was also a Privatdozent at the University of Vienna.

1917 The paper on what became known as the Radon transform was published in the journal,
Berichte der Sächsischen Akadamie der Wissenschaft.

1919-1922: Appointed as Extraordinary Professor at the University of Hamburg.
1922 While at Hamburg, the paper that identified Radon’s theorem was published in Mathematische

Annalen.11

– Radon’s theorem. Any set of n + 2 points in Rn can always be partitioned in two
subsets V1 and V2 such that the convex hulls of V1 and V2 intersect.

1922-1925: Held title of Ordinary Professor, University of Greifswald.
1925-1928: Held title of Ordinary Professor, University of Erlangen.
1928-1945: Held title of Ordinary Professor, University of Breslau.
1945-1947: A period of time interrupted by World War II. Radon traveled to Innsbruck, Austria to

escape a siege of Breslau, Poland.
1947:

• Returned to the University of Vienna and held the title of Ordinary Professor.
• Founded the journal Monatshefte für Mathematik, which began publication in 1948. (Prior to

World War II, this journal had been known as Monatshefte für Mathematik und Physik.)
1948-1950: Served as president of the Austrian Mathematical Society (known as the Mathematical

Society in Vienna prior to the Second World War).
1951-1952: Dean of the Philosophical Faculty at the University of Vienna.
1954-1956: Rector of the University of Vienna.

It is interesting to point out that even though Cormack had not been aware of Radon’s theory of inte-
gration, in some academic circles we find that Radon’s work in this area (as well as measure theory) was
considered classical during his lifetime [23]. Leopold Schmetterer, a colleague of Radon’s, recounts that in the
1950s a young American mathematics student came to the University of Vienna to visit him [Schmetterer]
for one semester—the student had been a pupil of Antoni Zygmund (a harmonic analyst famous for his work
in trigonometric series). Schmetterer recalls that when the student saw the name Johann Radon in large
letters on the door of the office next to his, the student asked Schmetterer, “Who is that?” Schmetterer
answered saying, “You certainly know the inventor of the ‘Radon integral’.” The student replied, “Of course,
I know him, but he must be at least 100 years old, since these results have long been an essential constituent
of measure theory and theory of integration.” This story ends in a whimsical matter in that, just then,
Radon apparently returned from a lecture and the young American student could finally convince himself
that Radon was still alive and scientifically active [23]. In fact, in 1954, two years prior to his death, Radon
published an article on the calculus of variations in Archiv der Mathematik.12

In another recount, Schmetterer tells of a time in which Radon in 1948 read a rather suspicious letter he
had received in which its author claimed to have found the “correct value” for π [23]. The letter’s author
was, however, unable to convince the world of this find, and was asking for the help of Radon’s authority
to convince them so. The author went on to propose that Radon should deposit the new value with the
United Nations, and ask 1 U.S. dollar for each request. In return, the letter’s author would willingly share
his anticipated immense profit with Radon.

8English translation of Radon’s dissertation—On the Minimum of the Integral
∫ S1
S0

F (x, y, θ, κ)ds.
9The Technical University of Vienna was founded in 1815 as the Imperial-Royal Polytechnic Institute.
10English translation of Radon’s habilitationsschrift (or post-doctorate thesis), “Theory and Application of Absolute Additive

Weighting Functions.”
11The article in which Radon’s theorem appeared was titled, in German, “Mengen konvexer Körper, die einen gemeinsamen

Punkt enthalten.” Translated into English, this becomes, “Volumes of Convex Bodies that Contain a Common Point.”
12Radon, J. Gleichgewicht und Stabilität gespannter Netze. (German) Arch. Math. (Basel) 5, (1954). 309-316.
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We are fortunate to be given a glimpse into the personal story of Johann Radon through the recollections
of his daughter, Brigitte Burkovics.13 From her unique perspective [24] we see that Radon not only enjoyed
[chamber] music and hiking or that he moved frequently in his teaching positions, but like so many other
individuals and families in those times, encountered hardships during the First and Second World Wars
(including the loss of his youngest son in the Second World War).

In January 1945, Radon moved his family from Breslau, Poland (where he was teaching at the University
of Breslau) to Innsbruck, Austria (where he served as a guest to the University of Innsbruck). The move from
Breslau was a decision made to escape a siege of Breslau that was soon to begin, and the town of Innsbruck
was sought out because one of the sisters of his wife lived there. Above all, however, Radon remained positive
[24]. For instance, after having experienced significant loss during World War II, his daughter explains:

The circumstances of our life had completely changed. The loss of my beloved brothers was
very hard for all of us. [Note: all three of Radon’s sons died early in life.] Then we had
lost our home and all our belongings, we had only saved our lives, and the future was very
uncertain. Yet I have never heard my father complaining, neither at this time nor at any
other. Only once he mentioned the loss of his very valuable library, which he would have
much needed. Though we were always hungry and had no good shoes, we went sometimes
hiking in the mountains. The wonderful surroundings of Innsbruck and the hope that the
future could only become better, helped us to get through these months. In autumn 1945,
the French took over as occupying power from the American forces and in a short time
they opened the theatre and the university. Father could begin again as a guest professor.
Though the winter was very cold, and many rooms in the university had broken windows,
the glass being replaced by paper, we were all very happy that we could go on studying
without working besides 8 hours per day for the war industry.

For more details on Radon’s personal triumphs and struggles, the reader is referred to the transcript of his
daughter’s 1992 speech celebrating Radon’s life and commemorating 75 years of the Radon transform [24].

Toward the end of his career Radon acquired many administrative responsibilities at the University of
Vienna; however, to say that he had a love of paper work in this capacity may be an overstatement. In another
somewhat whimsical story, Radon asked Schmetterer to his office to find a form in a stack of papers on his
desk for the Ministry of Education [23]. The form dealt with the heating of the rooms of the Mathematical
Institute. When Schmetterer began at the top of the pile, Radon remarked, “The relevant geologic stratum
must be much further down.”

On May 25, 1956, at the age of 68 years, Johann Radon died after five months of illness [24]. An
obituary appeared in Monatshefte für Mathematik in 1958 [26]; whereas it was written in German, this
author is not aware of any English translation of the text. Hence, it is explicitly stated here, and perhaps
for the first time—that history remembers Johann Radon for having played a key role in helping rebuild the
Austrian mathematical scene following the Second World War. Not only did Radon re-establish the Austrian
Mathematical Society as well as the journal founded by his advisor (Gustav von Escherich), but prior to
returning to the University of Vienna in 1947 he steadfastly served the Austrian community (during very
tumultuous times), particularly during a period of time when he was a guest professor at the University of
Innsbruck.

Radon’s mathematical legacy is not forgotten. In 2003, the Austrian Academy of Sciences opened the
Johann Radon Institute for Computational and Applied Mathematics, which promotes the role of mathemat-
ics in science, industry and society [27]. In addition, according to the Mathematics Genealogy Project [28],
Radon had 18 students who earned their PhD’s, and from these, “312 descendants.” Finally, motivated in
part by the previously discussed efforts of Allan Cormack to uncover the lineage of the Radon problem (that
is, to reconstitute a function from its integrals), the appendix of this paper offers a compiled bibliography
of Radon’s work.

3. A Derivation of the Radon Transform

In some ways, this section of the essay picks up where a 1996 article published by Friedland and Thurber
in the American Journal of Roentgenology leaves off [29]. For example, that article not only provided a

13Brigitte Burkovics (maiden name: Radon) earned her PhD in mathematics at the University of Innsbruck in 1948 with a
dissertation titled, “Series Expansions of the Elliptic Integrals.”
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succinct history of the theoretical work by Cormack as well as the engineering and clinical works performed
by Hounsfield and Ambrose, but it also provided a concise history of the French mathematician Jean Baptiste
Joseph Fourier (March 21, 1768 - May 16, 1830), the namesake given to Fourier analysis. (Note: as mentioned
previously, the Radon transform falls under a categorical subfield of mathematics known as Fourier analysis.)
In addition, like Friedman and Thurber, this author recognizes that almost all CT scanners today employ
fast Fourier transform algorithms by means of filtered (convolutional) back projection. Interestingly, it is
from this application of the fast Fourier transform algorithm (an efficient computational implementation of
the discrete Fourier transform), that images in CT can be rapidly processed using a digital computer [29].

Moreover, it is important to understand that the Radon transform refers to a special case of the Fourier
transform; and the Fourier transform is a limiting case of the Fourier series [30,31]. This means whereas
a Fourier series is the mathematical instrument used when evaluating periodic phenomena [30], a Fourier
transform is reserved for the study of phenomena that is nonperiodic [31]. Thus, the choice of the application
of a “transform” is an intuitively simple decision, given that x-ray photons in the exit beam strike the image
receptor in burst-like impulses that are mostly nonperiodic rather than periodic in fashion. In mathematical
terms, burst-like physical phenomena that are almost periodic are known as line impulses. The concept of
the line impulse will be a key point expanded upon below. To simplify the derivation of the Radon transform,
assumptions are made that ignore certain computational issues, as follows:

• The playoff between Cartesian and polar coordinate representations, i.e., the 2-dimensional xy-plane
versus spherical/circular symmetry, respectively.

• Adjustments in modeling to account for fan-beam [16] or cone-beam CT constructs [32].

To this end, it is a parallel beam configuration in CT that will be described by the model (and thus most
enthusiastically applied to first and second generation CT scanners, in line with the historical nature of this
paper).

It is noted that no single mathematical derivation exists for x-ray CT in medicine due to the lack of a truly
rigorous justification of a tomographic algorithm [33]. Hence, inversion of the Radon transform is described,
here, in simple mathematical language.14 Such interpretation will be facilitated by a glossary of terms, see
Table 2. Also, where noted, Wolfram Mathematica (the online computational engine, Wolfram|AlphaTM)
was used to plot the traditional representative line equations of the x-ray photons. Accordingly, then, the
steps necessary to invert the Radon transform, without reference to discrete numerical analysis, as it is this
inversion technique that serves to recapture the information lost to attenuated x-ray photons, will constitute
the balance of this section.

3.1. The Set Up. The underlying theme in this mathematical application is a signal processing challenge,
and the set up for the analysis is straightforward. We have a 2-dimensional slice of a region of variable density
(the patient), and the goal as applied to CT scanning is to reconstruct the resulting x-ray signal (the image)
after repeatedly passing x-rays through the region at different angles of initial projection (the CT gantry).
More concisely stated, we are measuring the resultant signal at different trajectory lines by accumulating
(integrating) the signal after projecting x-ray photons through the region. Hence, the approach reconstructs
the densities of the materials interacting with the x-ray photons [34], to ultimately assign density values
according to the Hounsfield unit scale of CT numbers for data acquisition/image processing [35]. Such
modeling serves as an engineering template for trouble-shooting in the event of errors, such as equipment
failure or computer algorithm failures, which may lead to radiation overdose of the patient [36].

Given that the approach resolves signal processing by means of calculating line integrals to recover the
intensity of the x-ray signal (i.e., capture the data lost to attenuated or scattered x-rays), a comparison
may be made to the inverse square law which estimates beam intensity from known initial conditions, the
intensity of- and distance from- the beam [37]. However, the comparison is rudimentary at best because the
central and interesting feature of the model applicable here, i.e., the Radon transform and its inverse, lies in
the fact that we are strictly calculating the intensity of the exit/secondary beam based solely on a known
intensity of the primary beam.

The derivation of the mathematical model can be relatively easy to follow since the steps involved are
pragmatic to imaging tasks carried out in the CT suite. We begin by a detailed inspection of representative

14The derivation presented is adapted from course notes on EE261 The Fourier Transform and Its Applications as taught
by Brad Osgood, PhD, Stanford University Engineering.
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x-ray trajectories relative to the CT gantry (i.e., the family of parallel lines), and then compare the suitability
of two different proposed coordinate systems for the model.

3.1.1. Lines/Family of Lines. Refer to Figure 3 for a depiction of the CT gantry with the x-ray beam drawn
as a family of parallel lines though the region. Each representative x-ray trajectory (i.e., the parallel lines)
can be written in the slope-intercept form of a line.

y = mx+ b, with −∞ < b <∞ and 0 6∞.
In this form, the coordinates of the lines in the xy-plane are the points (m, b), “m” the slope of the line
and “b” the y-intercept. However, this coordinate system breaks down as “m” and “b” vary because the
formula is not valid for vertical lines, such that a vertical slope is not defined [38]. Therefore, a more suitable
coordinate system is required to parameterize a line (and all families of parallel lines), and therefore, it is
interesting to look at what a family of parallel lines may have in common (see Figure 4).

Referring to Figure 4, one such identified commonality is that each line has the same angle to the horizontal
axis, the x1-axis. Thus, we will call this angle, the angle (ϕ). Specifically, it is the normal vectors of these
lines that have the same angle to the x1-axis. However, to better identify locations of lines, we need more
than just the angle to the x1-axis. To single-out a line we look at its distance (ρ) from the line passing
through the origin (see Figure 4). Thus, with these parameters, the distance (ρ) and the angle (ϕ), we have
successfully established an unambiguous coordinate system that is not flawed by the non-existence issue of a
vertical slope. The Cartesian equation of the line for the model, is now specified by a given coordinate pair
(ρ, ϕ) in the form:

x · n = x1 cosϕ+ x2 sinϕ = ρ

where both x and n are vectors, each defined in the following way, x = 〈x1, x2〉 and n = 〈cos(ϕ), sin(ϕ)〉, and
the line equation is derived by vector multiplication, in this case by using the dot product method, where it
is said that x is dotted with n.

3.1.2. Line Impulse. It is necessary to account for the nonperiodic nature of the signal concentrated along
each trajectory taken by the x-ray photons, and this is accomplished by considering the line impulse [31].
The line impulse describes the physical phenomena of x-ray photons striking the image receptor in the CT
gantry. To define the line impulse mathematically, we first need to set the Cartesian equation of the line for
the model to zero as shown.

ρ = x1 cosϕ+ x2 sinϕ

ρ− x1 cosϕ− x2 sinϕ = 0

The resultant equation, which immediately follows, then becomes a function of delta, denoted by δ [31],

ρ− x1 cosϕ− x2 sinϕ
becomes−−−−−→ δ(ρ− x1 cosϕ− x2 sinϕ).

The delta function δ, is the classical approach to the line impulse [30], and has advantageous implications
for dimensionality and integration of a line in the following way.

(1)

∫
L

µ =

∫∫
R2

µ(x1, x2) δ(ρ− x1 cosϕ− x2 sinϕ)︸ ︷︷ ︸
line impulse

dx1dx2

On the left hand side of Equation 1, the line integral denoted by L of the function µ is a single integral for the
1-dimensional case of the line, and on the right hand side, the double integral denoted by R2 of the function
µ is the 2-dimensional case of the plane. Note that the line impulse, i.e., the delta function δ concentrated
on a line, has a domain of infinity on the line and zero off the line.

3.2. The Radon Transform. Equipped with a suitable coordinate system and having addressed the line
integral with respect to the line impulse, we are ready to introduce the computational steps central to the
mathematical model, inverting the Radon transform. As we do this, it is important to first point out what
is varying as we work through the computations, i.e., to identify the variables associated with the integrand
(those terms being integrated).

As shown in Figure 5, superimposition of the useful/suitable coordinate system (as described earlier) onto
a representative cross-sectional image (the region of interest) will help identify the variable. Looking at
Figure 5, think in terms of what it means to fix ϕ and let ρ vary. This means the family of parallel lines will
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be defined by the angle made with the x1-axis, and only the distance of a line from that of the line going
through the origin will be of concern. In other words, the angle is fixed, it does not change, allowing ρ to
be the variable as we accumulate (integrate) data. Thus, the Radon transform R can now be introduced by
rewriting Equation 1, in relation to the signal/function µ, where µ is a function of ρ and ϕ, (see Equation
2). Note: in this and the remaining sections, the x-ray signal will be written as the function µ.

(2) Rµ(ρ, ϕ) =

∫
L(ρ,ϕ)

µ =

∞∫
−∞

∞∫
−∞

µ(x1, x2)δ(ρ− x1 cosϕ− x2 sinϕ)dx1dx2

Accordingly, both the line integral L and the double integral above are more concisely expressed here than
in Equation 1. With respect to the line integral, it is now written as a function of ρ and ϕ, and the limits
of integration (−∞ to ∞) are explicitly stated for the double integral.

As discussed earlier the Radon transform is a special case of the Fourier transform, thus it is accurate
to write the Fourier transform F with respect to ρ (denoted by the subscript ρ) as a function of the Radon
transform R, as seen in the following notation [31].

(3) Fρ
(
Rµ(ρ, ϕ)

)
=

∞∫
−∞

e−2πirρ
(
Rµ(ρ, ϕ)

)
dρ

The significance of this step is that we are now accounting for the spatial domain, denoted here by the
letter “r” in the complex exponential, e−2πirρ [30]. In reality, the derivation for this mathematical application
(as we strive to understand it in the context of CT) is concerned with two domains, the spatial domain and
the frequency domain, and moreover, both are present/available in the complex exponential, e−2πirρ.

Further evaluating Equation 3, including switching the order of integration (see below), we are able to
address dimensionality in the Radon problem (by first dealing with the 1-dimensional component).

Fρ
(
Rµ(ρ, ϕ)

)
=

∞∫
−∞

e−2πirρ
(
Rµ(ρ, ϕ)

)
dρ

=

∞∫
−∞

e−2πirρ

 ∞∫
−∞

∞∫
−∞

µ(x1, x2)δ(ρ− x1 cosϕ− x2 sinϕ)dx1dx2

 dρ

=

∞∫
−∞

∞∫
−∞

µ(x1, x2)

 ∞∫
−∞

e−2πirρδ(ρ− x1 cosϕ− x2 sinϕ)dρ

 dx1dx2

=

∞∫
−∞

∞∫
−∞

µ(x1, x2)


∞∫
−∞

e−2πirρδ(ρ− (x1 cosϕ+ x2 sinϕ))dρ

︸ ︷︷ ︸
The 1-dimensional Fourier transform.

 dx1dx2

The above multi-line evaluation yields:

(4) Fρ
(
Rµ(ρ, ϕ)

)
=

∞∫
−∞

∞∫
−∞

µ(x1, x2)e−2πir(x1 cosϕ+x2 sinϕ)dx1dx2,

where the complex exponential, e−2πir(x1 cosϕ+x2 sinϕ), may be rewritten after distributing “r”, such that we
obtain e−2πi(x1r cosϕ+x2r sinϕ). To finish simplifying the complex exponential, we introduce the concept of
dual variables, in that (x1 is paired with ξ1) and (x2 is paired with ξ2), where ξ1 and ξ2 are each constants
defined in the following way:

ξ1 = r cosϕ and ξ2 = r sinϕ.

Although each of these equalities above suggest implementation of polar coordinates (the coordinate
system employed for spherical/circular symmetry), they are not intended to do so in this derivation. The
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equalities merely serve as a means to express the complex exponential more simply with dual variables, as
follows:

e−2πi(x1ξ1+x2ξ2).

It is now important to emphasize what has been derived thus far, and what computational steps remain.
We have derived the 1-dimensional integral (that integral involving the line impulse). The remaining com-
putational steps in the Radon problem involve the actual processes to recover the values of the densities
µ, i.e., to reconstruct the densities from the region, by inverting the Radon transform as a function of the
Fourier transform over the 2-dimensional region.

3.3. Inverting the Radon Transform. To invert the Radon transform, we first plug the result of the
1-dimensional integral (as derived above and reemphasized below) back into the original Fourier transform
which we set up earlier. This is shown below. We now have the 2-dimensional Fourier transform of µ, i.e.,
the double integral, set up to integrate first with respect to dx1 and then with respect to dx2.

(5) Fρ
(
Rµ(ρ, ϕ)

)
=

∞∫
−∞

∞∫
−∞

µ(x1, x2)e−2πi(x1ξ1+x2ξ2)dx1dx2

Hence, to best convey the details of the final computation step, it is of certain benefit to pause in order
to recapitulate the entire mathematical derivation up to this point.

• First, a suitable coordinate system (ρ, ϕ) was found.
• Second, “ϕ was fixed to let ρ vary,” where ϕ is the angle that each line in the family of parallel lines

makes with the x1-axis, and ρ represents the values of distances of these lines from the line passing
through the origin.

• Third, the 1-dimensional Fourier transform of the corresponding Radon transform was found with
respect to ρ, resulting in the 2-dimensional Fourier transform of µ.
(a) In principle the problem is solved. We have measured the Radon transform, i.e., the line integral

of µ along the family of parallel lines.
(b) Because we know the expression of the 1-dimensional transform and the values which emerge,

those associated with
(
e−2πi(x1ξ1+x2ξ2)

)
, we can now compute the Fourier transform with respect

to ρ [31].

By computing the Fourier transform with respect to ρ, we get the 2-dimensional Fourier transform with
respect to µ. This means that we can find µ by taking the inverse of the 2-dimensional Fourier transform of
what was found:

(6) Fµ(ξ1, ξ2) = G(ξ1, ξ2)
recovers µ−−−−−−→ µ = F−1G(ξ1, ξ2)

where G(ξ1, ξ2) equals
(
e−2πi(x1ξ1+x2ξ2)

)
, the known values of the 1-dimensional Fourier transform. By

taking the inverse of the signal/function µ (we recover the lost data contained in the trajectory lines of the
x-ray photons passing through the region of interest), and we are able to reconstruct the densities of the
region [31]. That is to say, we now have µ. In turn, this enables the CT scanner to assign density values
according to the Hounsfield unit scale of CT numbers for data acquisition/image processing [35].

Part 3. Summary

The language of mathematics not only permeates all scientific study, but the very application of math-
ematics itself allows exploration to occur at the limits-of-discovery to find answers to questions that vex
human nature.15 From this perspective we see mathematicians, such as Johann Radon, provide physicists
and engineers with “plausible guidance” for their discoveries. This paper presented the first comprehensive
essay on the Austrian mathematician Johann Radon (against the backdrop of x-ray CT in medicine). While
Radon’s contributions to furthering the calculus of variations, measure theory, and functional analysis were
significant to mathematics, it is his work on what became known as the Radon transform, widely recognized
today thanks in large part to Allan Cormack, which earns Johann Radon an honorary place in the history of

15Wininger KL. Applied radiologic science in the treatment of pain: interventional pain medicine. In: Racz GB, Noe CE,
eds. Pain Management - Current Issues and Opinions. InTech Publishing. 2012.
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medical imaging. Noted here, however, Radon’s most significant contributions to the history (of mathemat-
ics) may have very well been the part he played in rebuilding the mathematical scene in Austria following
the Second World War.
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Appendix

A collection of known papers authored by the early 20th century mathematician Johann Radon, compiled
from a search of the following databases: 1) Electronic Research Archive for Mathematics maintained by the
European Mathematical Society; and 2) MathSciNet maintained by the American Mathematical Society.

1. Radon, J. Gleichgewicht und Stabilität gespannter Netze. (German)
Arch. Math. (Basel) 5, (1954). 309-316.
English translation: Equilibrium and stability of strained networks.

2. Radon, J. Zur Polynomentwicklung analytischer Funktionen. (German)
Math. Nachr. 4, (1951). 156-157.
English translation: Analytic functions to polynomial.

3. Radon, J. Über geschlossene Extremalen und eine einfache Herleitung der isoperimetrischen Ungle-
ichungen. (German)
Ann. Mat. Pura Appl. (4) 29, (1949), 315-320.
English translation: On closed extremal and a simple derivation of isoperimetric inequalities.

4. Radon, J. Zur mechanischen Kubatur. (German)
Monatsh. Math. 52, (1948). 286-300.
English translation: For mechanical cubature.

5. Radon, J. Ein einfacher Beweis für die Halbstetigkeit der Integrale der Variationsrechnung auf starken
Extremalen. (German)
Math. Ann. 119, (1944). 205-209.
English translation: A simple proof of the semicontinuity of integrals of the calculus of variations
on strong extremal.

6. Radon, J. Über Tschebyscheff-Netze auf Drehflächen und eine Aufgabe der Variationsrechnung.
(German)
Mitt. Math. Ges. Hamburg 8, (1940). part 2, 147-151.
English translation: About Chebyshev nets on surfaces of revolution and an object of the calculus
of variations.

7. Radon, J. Ein Satz der Matrizenrechnung und seine Bedeutung fr die Analysis. (German)
Monatsh. Math. Phys. 48, (1939). 198-204.
English translation: A set of matrix and its importance for the analysis.

8. Radon, J. Bewegungs Invariante Variationsprobleme, betreffend Kurvenscharen. (German)
Abh. math. Sem. Hansische Univ. 12, (1937). 70-82.
English translation: Motion invariant variational problems on curves.

9. Radon, J. Singuläre Variationsprobleme. (German)
Jber. Deutsche Math.-Verein. 47, (1937). 220-232.
English translation: Singular variational problems.

10. Radon, J. Annäherung konvexer Körper durch analytisch begrenzte. (German)
Monatsh. Math. Phys. 43 (1936), no. 1, 340-344.
English translation: Analytical approximation of convex bodies by limit.

11. Radon, J. Restausdrücke bei Interpolations- und Quadraturformeln durch bestimmte Integrale. (Ger-
man)
Monatsh. Math. Phys. 42 (1935), no. 1, 389-396.
English translation: Residual terms for interpolation and quadrature formulas by certain integrals.

12. Radon, J. Bestimmung einer Riemannschen Metrik durch Krümmungseigenschaften. (German)
Monatsh. Math. Phys. 35 (1928), no. 1, 9-24.
English translation: Determination of a Riemannian metric by curvature properties.
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13. Radon, J. Mathematik und Wirklichkeit. (German)
Sitzungsberichte Erlangen 58/59, (1928). 181-190.
English translation: Mathematics and Reality.

14. Radon, J. Zum Problem von Lagrange. 4 Vorträge, gehalten im Mathematischen Seminar der Ham-
burgischen Universitt (7.-24. Juli 1928). (German)
Abhandlungen Hamburg 6, (1928). 273-299.
English translation: On the problem of Lagrange.

15. Radon, J. Über die Oszillations theoreme der konjugierten Punkte beim Probleme von Lagrange.
(German)
Sitzungsberichte München 1927, (1927). 243-257.
English translation: On the oscillation of the conjugate points theorems in problems of Lagrange.

16. Radon, J. Über konforme Geometrie. VI: Kurvennetze auf Flchen und im Raume von Riemann.
(German)
Abhandlungen Hamburg 5, (1926). 45-53.
English translation: On conformal geometry. VI: curve networks on land and in space of Riemann.

17. Radon, J. Über konforme Geometrie. V: Neue Kennzeichnung der zyklischen Kurvennetze. (German)
Abhandlungen Hamburg 4, (1926). 313-320.
English translation: On conformal geometry. V: New labeling the cyclic curve networks.

18. Radon, J. Berichtigung zu der Abhandlung “Zur Behandlung geschlossener Extremalen in der Vari-
ationsrechnung”. (German)
Abhandlungen Hamburg 4, (1925). 13-14.
English translation: Correction to the paper “For the treatment of closed extremals in the calculus
of variations”.

19. Radon, J. Zur Riemannschen Geometrie. (German)
Jahresbericht D. M. V. 33, (1925). 95-96 kursiv.
English translation: To the Riemann geometry.

20. Radon, J. Zur Behandlung geschlossener Extremalen in der Variationsrechnung. (German)
Hamb. Abh. 1, (1922). 195-205.
English translation: For the treatment of closed extremals in the calculus of variations.

21. Radon, J. Lineare Scharen orthogonaler Matrizen. (German)
Hamb. Abh. 1, (1921). 1-14.
English translation: Linear bands of orthogonal matrices.

22. Radon, J. Mengen konvexer Körper, die einen gemeinsamen Punkt enthalten. (German)
Math. Ann. 83 (1921). no. 1-2, 113-115.
English translation: Volumes of convex bodies that contain a common point.

23. Radon, J. Über die Bestimmung einer Riemannschen Metrik aus dem Krümmungstensor. (German)
Deutsche Math.-Ver. 30, (1921). 76.
English translation: Identification of a Riemannian metric from the curvature tensor.

24. Radon, J. Über statische Gravitationsfelder. (German)
Hamb. Abh. l, (1922). 268-280.
English translation: About static gravitational fields.

25. Radon, J. Über die Randwertaufgaben beim logarithmischen Potential. (German)
Wien. Anz. 56, 190; Wien. Ber. (2) 128, (1920). 1123-1167.
English translation: On the boundary value problems in logarithmic potential.
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26. Radon, J. Über lineare Funktionaltransformationen und Funktionalgleichungen. (German)
Wien. Anz. 56,189; Wien. Ber. (2) 128, (1919). 1083-1121.
English translation: About linear functional transformations and functional equations.

27. Radon, J. Über affine Geometrie XVII: Zur Affine geometrie der Regelflächen. (German)
Leipz. Ber. 70, (1919). 147-155.
English translation: On affine geometry XVII: The affine geometry of ruled surfaces.

28. Radon, J. ber affine Geometrie XVI: Die Grundgleichungen der affinen Flchentheorie. (German)
Leipz. Ber. 70, (1918). 91-107.
English translation: On affine geometry XVI: The basic equations of the affine surface theory.

29. Radon, J. Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannig-
faltigkeiten. (German)
Leipz. Ber. 69, (1917). 262-277.
English translation: On the definition of functions by their integral values along certain manifolds.

30. Radon, J. Über eine Erweiterung des Begriffes der konvexen Funktionen mit einer Anwendung auf
die Theorie der konvexen Körper. (German)
Wien. Ber. 125, (1916). 241-258.
English translation: An extension of the concept of convex functions with an application to the
theory of convex bodies.

31. Radon, J. Die Kettenlinie bei allgemeinster Massenverteilung. (German)
Wien. Ber. 125, (1916). 221-240.
English translation: The chain line in the most general mass distribution.

32. Radon, J. Über eine besondere Art ebener konvexer Kurven. (German)
Leipz. Ber. 68, (1916). 123-128.
English translation: Through a special kind of plane convex curves.

33. Radon, J. Theorie und Anwendungen der absolut additiven Mengenfunktionen. (German)
Wien. Ber. 122, (1913). 1295-1438.
English translation: Theory and applications of absolutely additive set functions.

34. Radon, J. Zur Theorie der Meyer schen Felder beim Lagrange schen Variationsproblem. (German)
Wien. Ber. 120, (1911). 1337-1360.
English translation: On the theory of Meyer electromagnetic fields for Lagrangian between vari-
ational problem.

35. Radon, J. Über einige Fragen betreffend die Theorie der Maxima und Minima mehrfacher Integrale.
(German)
Monatsh. Math. Phys. 22 (1911). no. 1, 53-63.
English translation: On some questions concerning the theory of maxima and minima of multiple
integrals.

36. Radon, J. Über das Minimum des Integrals
∫ s1
s0
f(x, y, θ, κ)ds. (German)

Wien. Ber. 119, (1910). 1257-1326.
English translation: On the minimum of the integral

∫ s1
s0
f(x, y, θ, κ)ds.



18

1 MATH 3540.jpg

Table 1. Mathematics Subject Classification on Harmonic Analysis—per the American
Mathematical Society. The Radon problem, which relates to reconstructing a function from
its integral, falls under the second arm, “Harmonic Analysis in Several Variables,” and
within this subclassification, belongs under “Fourier and Fourier-Steiltjes transforms and
other transforms of Fourier type.”
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Table 2. Glossary of terms.
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Figure 1. (A) The prototype CT scanner developed by Sir Godfrey Hounsfield and built
by Electric & Musical Industries, Ltd. (EMI) 1971. (B) Notably, the scanner was a dedi-
cated head scanner (a whole body scanner was built by Hounsfield and EMI in 1975). (C)
Confirmed frontal lobe tumor seen in the first patient scanned on the prototype EMI scanner
at Atkinson Morley Hospital on 1st October 1971.
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Figure 2. Graphical representation of the lineage of the Radon transform.
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Figure 3. (Top left) Gantry of CT scanner showing trajectories of x-rays [long arrows]
emitted as lines/family of parallel lines. (Top right) Illustrated clockwise rotation of the x-
ray tube inside the gantry. (Bottom left/right) Representative, corresponding line equations
written in the slope-intercept form y = mx+ b in the xy-plane. The (m, b) coordinates are
given by the line equations.
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Figure 4. A better-suited coordinate system (ρ, ϕ) for the model. (Top panel) Arrow
demonstrating the unit normal vector associated with the line passing through the origin,
and oriented with an angle phi (ϕ) to the x1-axis in the x1, x2-plane. (Bottom panel)
A family of 3-parallel lines and their unit normal vectors [arbitrarily placed on the lines]
showing signed distances rho (ρ) from the origin [double ended arrows]. By convention,
distances are positive [i.e., positive rho (ρ)] when measured in the direction of the normal
vector from the line passing through the origin to associated parallel lines. In a similar
fashion, distances are negative [i.e., negative rho (−ρ)] when measured from the line passing
through the origin to parallel lines spatially existing opposite to the direction established
for the normal vector. Rho (ρ) is zero at the line passing through the origin. (Note: the
unit normal vectors are not drawn to scale, and when compared to Figure 3, the xy-plane
has been renamed the x1, x2-plane.)
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Figure 5. Notice what this family of parallel lines has in common, each line has the same
angle ϕ (phi) to the x1-axis. Thus, the variable to use with respect to integrating the
constituent integrals of the Radon transform (and those integrals contributing to the Fourier
transform) is the distance ρ (rho) of a line from the line passing through the origin.


