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 At the heart of the differential and integral calculus lie the notions of the infinite and the 

infinitely small. Whether characterized by the continuous, the instantaneous, or the infinite in 

quantity, whether described vaguely in the 17th century [2, 200-202] or rigorously in the 19th , 

one will seldom see a concept in the calculus which fails to invoke these fundamental notions. 

Although the historical development of ideas of the infinite was plagued with skepticism and 

doubts about mathematical arguments which utilized them, owing to the seeming 

incomprehensibility inherent to the meaning of “infinite,”  there have nevertheless been a few 

mathematicians who momentarily withheld their suspicions and applied their intellect to the 

massive concept. Archimedes, for example, considered the infinite and the infinitesimal “as 

suggestive heuristic devices, to be used in the investigation of problems concerning areas and 

volumes which were preliminary to the intuitively clear and logically rigorous proofs given in 

the classical geometrical method of exhaustion” [2, 96]. Indeed, it was perhaps Archimedes’ 

relatively lax views towards the infinite (along with his genius) which allowed him to exploit so 

well the method of exhaustion (a classical technique developed by Eudoxus which determined 

areas of non-polygonal regions by inscribing in them polygons with an ever-increasing number 

of sides, thus finding their areas by “exhausting” the space of that region [8, 84-85]) in 

determining curvilinear areas, volumes, surfaces, and arcs—works of his which have “frequently 

been referred to as genuine integration” [1, 34] (“integration” in this context refers to techniques 

for finding areas of curved regions). As Carl B. Boyer describes in [2], the infinite, and related 

concepts such as the continuum, began to be discussed and used more freely during the later 

Middle Ages, albeit in a much more metaphysical and scientific setting. However, 

mathematicians of the late 15th and 16th centuries rejected these Scholastic and Aristotelian views 
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and instead attempted to reconcile them with the views of Archimedes. This attempt at 

reconciliation during the 16th century, mixed with influences from Hindu and Arabic algebra, as 

well as a gradual acceptance of new kinds of numbers (irrational, negative, imaginary), allowed 

for and helped to lead to the eventual development of various methods of “indivisibles” [2, 

96-98], with which this paper will concern itself. In particular, I want to pay special attention to 

the application of methods of indivisibles to finding the area under one arch of a curve known as 

the “cycloid”—the curve traced by a point fixed on the circumference of a circle which rolls on a 

horizontal line (figure 1). 

The mathematicians whose solutions to this problem we will observe in depth are Gilles 

Personne de Roberval (1602-1675) and Pierre de Fermat (1601-1665), but it will first be 

necessary to introduce the mathematician who popularized indivisibles in the early 17th century, 

Bonaventura Cavalieri (1598-1647), and briefly explain his method for using them.

 Geometria indivisibilibus continuorum nova quadam ratione promota (1635) and 

Exercitationes geometricae sex (1647), both by Cavalieri, rapidly became the most quoted 

sources on geometric integration (again, “integration” refers to techniques for finding areas 

under curved regions) in the 17th century [1, 122-123], and it is in these two texts in which 

Cavalieri develops and applies his method of indivisibles. It should be noted that Cavalieri never 

explains precisely what he understands by the word “indivisible,” but he conceives of a surface 
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Figure 1; generation of the cycloid curve



as being composed of an indefinite number of parallel equidistant lines, and a solid as being 

composed of an indefinite number of parallel equidistant planes (figure 2), and it is these lines 

and planes which he called the “indivisibles” of the surface and of the volume, respectively [2, 

117].

 

Cavalieri held a view towards the infinite which could be described as “agnostic” [2, 117], and in 

fact he held that his use of the infinite and the indivisible was purely auxiliary, similar to the 

“sophistic” quantities used by Cardano in his solving of the cubic equation; “inasmuch as it did 

not appear in the conclusion, its nature need not be made clear” [2, 118]. This is to say that, 

although he could not precisely explain their nature, the “indivisibles” of Cavalieri’s arguments 

played the role of a useful tool or “blackbox,” and his conclusions were not concerned with 

“indivisible” facts, but rather with geometrical facts. Cavalieri’s method worked by establishing 

ratios between the individual indivisibles of one figure to those of another, and then from these 

ratios he developed relations between the areas (or volumes) of the figures (figure 3). 
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Figure 3; at any given height, the “indivisibles” of circle A are twice the length of those of 
semicircle B, and we conclude that area(circle(A)) = 2 area(semicircle(B))

d

Figure 2; Cavalieri’s conception of “indivisibles” [1, 124]
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The foundation of Cavalieri’s method of indivisibles rests upon two complimentary notions: the 

collective and the distributive. In the first notion, the collective sums, Σ l₁ and Σ l₂ of line (or 

surface) indivisibles (note: ‘Σ’ is used here to denote a collection of indivisibles; it does not refer 

to a numeric sum), of two figures P₁ and P₂ are obtained separately and then used to obtain 

ratios of the areas (or volumes) of the figures themselves [1, 125]. The second, distributive, 

notion was a concept which Cavalieri developed primarily to defend against anticipated 

philosophic objections to the comparison of indefinite numbers of lines and planes [2, 126]. It is 

used to tell us in what way we may compare this collection of indivisibles. The two concepts are 

best summarized in what is commonly known as Cavalieri’s Theorem (for solids), which 

essentially states: 

“If two solids have equal altitudes, and if sections made by planes parallel to the bases and at equal 

distances from them are always in a given ratio, then the volumes of the solids are also in this ratio” [2, 

118].

I have mentioned Cavalieri’s method because it plays a large underlying role in the following 

arguments from Roberval and Fermat in determining the area under one arch of the cycloid 

curve.

 Let us first introduce the cycloid curve itself. As I have mentioned, and as can be seen in 

figure 1, the cycloid is that curve which is traced by a point fixed upon a circle which itself rolls 

along a horizontal line. The cycloid possesses many peculiar properties, but here we will only 

demonstrate that the area under one arch of the curve is equal to three times that of the circle 

which generated it.

 6



 The cycloid was first referred to Roberval by Marin Mersenne (1588-1648) in a letter 

from 1628 [10, 167]. In it, Mersenne suggested that the curve might look like a semi-ellipse. It 

would not be until a letter dated January 6th, 1637, almost 9 years later, that Roberval would 

provide Mersenne with a sample, but not a full dossier, of his long-awaited work on the cycloid 

(Roberval was extremely secretive with his methods and results, which he attributed to an 

examination held every three years to retain his position of the Chair of Ramus at the Collège 

Royal [2, 140]). This letter to Mersenne was expanded in Roberval’s Traité des indivisibles, 

which he seems to have written sometime between 1634 and the end of 1636, though it was not 

published until 1693 in Divers ouvrages de mathématiques et de physiques, by the French 

Académie des Sciences. In it, Roberval explains how to construct the curve, how to find tangents 

to the curve, how to find the area under one arch of the curve, and how to find the volume of the 

solid produced by rotating one arch of the curve about the horizontal line of its base. 

 As a preliminary in Traité des indivisibles, Roberval outlines his conception of 

indivisibles, which is very similar to that of Cavalieri, except for the fact that Roberval 

considered a line as being made up not of an infinity of points, but of an infinity of little lines; 

likewise he held the surface to be composed not of an infinity of lines, but of an infinity of little 

surfaces, and so on in any given dimension [9, 190-191]. Notice that in Roberval’s conception of 

indivisibles, he supplies “the essential element found in our conception of the definite integral, in 

that, after dividing a figure into small sections, he allowed these continually to decrease in 

magnitude, … the result being obtained by summing an infinite series” [2, 142]. Thus, even 

though he does not rigorously define this concept, Roberval avoids the logical hole of 

considering a line as being made up of elements which have no length (for then, how could such 
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a line have length?), a surface as being made up of elements which have no width (likewise, how 

could such a surface have area?), etc., which is an inconsistency of Cavalieri’s conception of 

indivisibles. That being said, however, their two methods are actually very similar.

Roberval’s solution to finding the area under one arch of the cycloid curve. 

[This text is taken from the original Traité des indivisibles, found in the 1693 Divers ouvrages…, 

and translated from the French by me; all comments in [square brackets] are mine.]

 We pose that the diameter AB of the circle AEFGB is driven in parallel to itself, as if it 

were carried by some other body, until arriving at CD to complete the semi-circle or half-turn.

[See figure 4. He imagines diameter AB moving right to a line segment CD equal and parallel to AB such 

that the rectangle ABCD is formed, where sides AC and BD are each of length equal to “the semi-circle or 

half-turn,” meaning one half of the circumference of the circle AEFGB. So, if our circle AEFGB is of 

radius r, then AC is of length πr, and AB and CD are each of length 2r. Let circle AEFGB have center X.]

While it [AB] walks on  [as AB moves along AC towards CD], the point A at the extremity of the said 

diameter [AB] goes through the circumference of the circle AEFGB, and makes its way as 

much as the diameter [makes its way], so that when the diameter is on CD, the point A has come to 

[rolled up to] B, and the line AC finds itself equal to the [semi-]circumference AGHB.

[So, Roberval begins his construction of one half of one arch of the actual cycloid curve by supposing that, 

as diameter AB moves towards CD and the circle rolls towards the right, the point A also moves around the 
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circumference of the circle AEFGB (clockwise), a distance equal to that travelled by the diameter AB in its 

horizontal movement towards CD. Notice that Roberval does not yet let the point A make its horizontal 

movement towards CD. This relationship is given as follows: as A moves through an angle of θ along the 

circumference of AEFGB while the circle moves rightward, A moves a distance of (arc length) rθ, and AB 

simultaneously moves a distance of rθ along AC towards CD (figure 5), so that the arc length traversed by 

A and the horizontal movement of AB towards CD are each rθ from the original position of A.]

Thus this course [AC] of the diameter is divided into parts infinite and equal as well between 

them as to each part of the circumference AGB, which is divided also into infinite parts each 

equal between them and to the parts of AC traversed by the diameter, as has been said.

[Roberval characterizes “continuous” movement by saying that as AB travels towards CD, the “course of 

the diameter” AC is divided into tiny, “indivisible” segments which are equal to one another as well as 

equal to similar tiny, “indivisible” segments of the semi-circumference AGB (Figure 6). Roberval makes 

this observation so that later in the solution we may make comparisons between the “indivisibles” of the 

circumference AGB with those of the line AC.]

In afterwards I consider the path which the aforementioned point A made carried by two 

movements, the one from the diameter in front, the other from its own on the circumference.

[Now he begins to describe the actual cycloid curve.]
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Figure 5; the relationship between the different movements of the point A
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To find the said path, I see that when it [the point A] has come to E [a point on the semicircle; see figure 

7] it is lifted above its first place from which it left; this height is marked drawing from the point 

E [perpendicular] to the diameter AB a [distance] sine E₁, and the sinus verse A₁ is the height of A 

when it has come to E.

[See figure 7. Here “sine E₁” is the length of the half-chord from E at angle E₁ on the circle to a point 

labeled “1” (Roberval’s notation) on the circle’s diameter AB. In modern trigonometry, we call this distance 

“rsin(E₁).” Also, “sinus verse A₁” is given today by r - rcos(E₁).]

The same when it has come to F, from the point F on AB I draw the sine F₂, and A₂ will be the 

height of A when it has done two portions of the circumference, and drawing the sine G₃, the 

sinus verse A₃ will be the height of A when it has arrived at G; and doing thus from all places of 
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Figure 7; how to find the height of the cycloid curve
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the circumference that A traverses, I find all its heights and elevations over the extremity of the 

diameter A [AB], which are A₁, A₂, A₃, A₄, A₅, A₆, A₇ [see figure 8]; 

thus, in order to have places whereby pass [both] the said point A, and to-wit the line that it forms 

during its two movements [the cycloid], I carry all of its heights on each of the diameters M, N, O, 

P, Q, R, S, T, and I find that M₁, N₂, O₃, P₄, Q₅, R₆, S₇ are the same [heights] as those taken on 

AB.

[See figure 9. Roberval is actually describing the curve which he elsewhere called the Companion curve to 

the cycloid [1, 157]. The “diameters M, N, …, T,” are the line segments parallel and equal in length (2r) to 

the diameter AB which intersect AC at the points M, N, …, T. Roberval does not express it explicitly here, 

but it should be noted that the points M, N, …, T are chosen so that the line segments AM, AN, …, AT are 

equal in length to the arcs AE, AF, … . So, on the “diameters M, N, … S,” we mark respectively the heights 

1, 2, …, 7 corresponding to those marked on the diameter AB. He refers to these later as “M₁, N₂, … , S₇.”]
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Figure 9; the “companion” curve to the cycloid
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Then I take the same sines E₁, F₂, G₃, etc. and I carry them on each height found on each 

diameter, and I draw them towards the circle [from the companion curve], and from the [two] ends of 

these sines are formed two lines [curves], of which one is A 8 9 10 11 12 13 14 D [the cycloid], and 

the other A 1 2 3 4 5 6 7 D [the companion curve of the cycloid].

[See figure 10. So, on each “diameter M, N, O, … ,”  we translate rightward the corresponding half-chords 

from the semicircle with lengths rsin(E₁), rsin(F₂), rsin(G₃), …  so that the point 1 coincides with height 

M1 (which Roberval calls M₁), 2 coincides with N2 (N₂), 3 coincides with O3 (O₃), and so on. Once again, 

Roberval’s indivisibles are implicitly invoked, since constructing the complete curves A 8 9 … D and A 1 2 

… D in this manner requires an infinity of “diameters,” of “sines,” and of heights, so that the curves A 8 9 

… D and A 1 2 … D are indeed continuous, and not sets of discrete points. The curve A 8 9 … D is half of 

one arch of the cycloid curve.] 

I know how the line A 8 9 D [the cycloid] is made; but to know what movements have produced 

the other [the companion curve], I say that while AB traversed the line AC, the point A had climbed 

the line AB, and marked each of the points 1, 2, 3, 4, 5, 6, 7, the first space [from A to 1] while AB 

has come to M, the second [from 1 to 2] while AB has come to N, and thusly always equally from 

one space to the other until the diameter has arrived at CD; so the point A has climbed to B. And 

that is how the line A 1 2 3 D is formed.
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Figure 10; the cycloid curve and its companion curve; similar to Roberval’ s original diagram [9, 192]
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[Suppose, in general, that, instead of using the notations E₁, F₂, G₃, etc., we let θ be the angle of the arc 

which A traverses at a given time during its movement along the circumference of the circle. As A passes 

through such an angle, as we have seen, the circle moves a distance of rθ towards the line CD. Observe 

that, as in figure 11, if we take the point A to be the origin, then, with u = (x,y) representing an arbitrary 

point on it, the cycloid curve has been parameterized as 

x = r(θ-sinθ), y = r(1 - cosθ).

We also see that likewise with v = (x,y) representing an arbitrary point on it, the companion curve has been 

parameterized as 

x = rθ, y = r(1 - cosθ).]

Thus these two lines [curves] enclose a space, being separated from one another [horizontally] by 

each sine and rejoining together at the two ends of AD. Thus each part [line segment = “indivisible”] 

contained between these two lines [curves] is equal to each part [line segment = “indivisible”] of the 

area of circle AEB contained in the circumference of this one [semicircle]; knowing the heights A₁, 

A₂, etc., and the sines E₁, F₂, etc., which are the same as those of the diameters M, N, O, etc., 

thus the figure A 4 D 12 [see figure 10; the area enclosed by the cycloid and its companion curve] is equal to 

the [area of the]semi-circle AHB.

[Hence, we conclude, using Cavalieri’s method of indivisibles, that the area between the cycloid and its 

companion curve is equal to the area of the semicircle, namely ½πr².]
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Figure 11; parameterizing the cycloid curve and its companion curve
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Thus the line A 1 2 3 D [the companion curve] divides the parallelogram ABCD in two [in half] 

equally, because the lines of one half are equal to the lines of the other half, and the line AC to 

the line BD;

[See figure 12. We show congruence between the spaces APDC and APDB, the spaces inside the rectangle 

below and above the companion curve, respectively [1, 157]. Recall from figure 11 that if P lies on the 

companion curve with horizontal distance from A of rθ, then the length of the vertical line segment PQ is 

r(1 - cosθ). Now consider the point P’ on the companion curve with horizontal distance from A of rπ - rθ = 

r(π - θ). Notice that the length of the vertical line segment P’Q’ is 

2r - r(1 - cos(π-θ)) = 2r - r + rcos(π - θ) = r(1 - cosθ),

since cos(π - θ) = -cosθ. So PQ ≅ P’Q’. This means that for every vertical line segment like PQ contained in 

the space APDC at a distance of rθ from AB, there is a corresponding and congruent line segment like 

P’Q’ in the space APDB at a distance of rπ-r(π-θ) = rθ from CD, and so the two spaces have equal areas, 

according to Cavalieri’s method of indivisibles.]

and therefore, according to Archimedes, the half is equal to the circle, to which adding the 

semicircle, knowing the space understood between the two curved lines, one will have a circle 

and a half for the space A 8 9 D C [see figure 10; the space under the half-arch of the cycloid]; and doing 

the same for the other half, all of the figure of the cycloid is worth three times the circle.
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Figure 12; equating the areas above and below the companion curve
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[The reference to Archimedes is to his determination of the area of the circle [4, 92-95], which states that 

the area of a circle is equal to the area of a triangle which has a base equal to the length of the circle’s 

circumference and a height equal to the length of the circle’s radius. Since the side CD is length 2r (the 

diameter of the circle), and side AC is length rπ (half of the circumference of the circle), and according to 

Archimedes the area of the whole circle centered at X with radius r is ½r(2πr) = ½(2r)(πr) = πr², one half 

of the area of the rectangle ABCD is πr². But as we have shown, the area under the companion curve is also 

one half that of the rectangle ABCD. Thus, the area under the half-arch of the cycloid is given by 

[Area under companion curve] + [Area between the companion curve and the cycloid] 

= πr² + ½πr² = ³⁄₂πr²,

and doubling this, we see that the area under one arch of the cycloid is given by 3πr², meaning three times 

the area of its generating circle.]                                                                                           ❖

 

 One can see that the above argument is at its heart a geometrical one: we establish 

relationships between known areas (i.e. the semicircle and the rectangle) and our principal 

unknown area: the area under a half-arch of the cycloid curve. However, the argument is not pure 

geometry in its method of establishing these relationships, which is a Cavalierian “indivisible” 

method, albeit tempered by Roberval’s own conception of what an “indivisible” actually is. 

Hence we see in this argument a kind of segue between geometry and calculus: its core form is 

that of geometry, while its core mathematical utensil is that of the integral calculus— the notion 

of measuring an area using infinitely small rectangles or “surfaces.”

 After having solved this problem, Roberval notified Mersenne of his success in his 1637 

letter, but as we have said, without providing any kind of actual solution. Mersenne, excited by 

Roberval’s letter and curious as to whether his results were actually correct, notified his 

correspondents of the news in an effort to verify whether the secretive mathematician had 

actually discovered the area under one arch of the cycloid or not [5, 57]. One such correspondent 
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was Toulouse lawyer Pierre de Fermat, who in his first reply in February of 1638 to Mersenne 

expressed doubt over the validity of Roberval’s solution. Not knowing anything of Roberval’s 

method, Fermat responded to Mersenne in another letter from July1638 which begins:  “You 

remember that I had at another time written you that I had found the proposition of M. de 

Roberval doubtful and that I had apprehended that he had ambiguity in his research. Here is the 

confirmation.” [6, 377]. Indeed, Fermat’s solution to the area under one arch of the cycloid is 

framed in his letter to Mersenne as a “confirmation” of Roberval’s mistake. This claim is, of 

course, not true: Roberval and Fermat both provide differing yet correct arguments. In fact, 

Fermat retracted his doubts in a letter sent to Mersenne roughly one week after the letter from 

which we obtain the following solution; we will consider the follow-up letter after having 

explored the present work. 

Fermat’s solution to finding the area under one arch of the cycloid curve.

[This text is taken from a letter appearing in Correspondance du P. Marin Mersenne, vol. VII, pp. 

376-380. Again, the work has been translated from the French by me, and all comments in 

[square brackets] are mine.]

 Note in the following figure [The figure to which Fermat refers is given below as figure 14; figure 13 

is a preliminary diagram created by me.] the description of the curve described by a point upon a circle 

which rolls.

[Note the difference between this construction of the cycloid and Roberval’s construction; Fermat simply 

tells us how this curve came about, whereas Roberval went through the work of defining the movement of 

the point on the circle by relating it to other movements. The difference in rigor is most likely due to the 

fact that Mersenne, to whom Fermat was writing, was already aware from Roberval’s letter of how to 

construct the cycloid curve, and so Fermat found it unnecessary to go through such labors again.]
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Its base [the base of the cycloidal arch] is PR, cut equally [bisected] at the point F: its summit is A [that 

is, the highest point on the cycloidal arch]; the line AF, perpendicular on PR, is the diameter of the 

rolling circle; AIGF is half of the said circle; PLAR is the curved line [the cycloid curve]; PS is a 

rectangular parallelogram [Fermat defines this rectangle by its opposite vertices P and S, but we use here the 

convention “rectangle(PQSR)” to avoid confusion with the diagonal line PS.]

           

 

The principal property of the curve, which it is very easy to demonstrate, is that, if you take a 

point on this one [i.e., on the cycloid curve] like L, from which you draw LBK perpendicular on AF 

[see figure 13], the line LB is equal to the line BK and to [i.e. added to [6, note 2, p. 378]] the portion of 

the semi-circumference AK; 

[This is to say, for any line LBK such that L is on the cycloid, B is on the diameter AF of the circle, and K 

is on the semi-circumference of the circle, where LBK⊥AF, we have that LB = BK+ arc(AK). Let us 

demonstrate this fact. Remember from Roberval’s solution we derived that the horizontal distance of a 

point L on the cycloid from the line QP is given by r(θ-sinθ), where θ is as shown in figure 13, and r is the 

radius of the circle AIGF. Since PF has length rπ, then LB must have length 

rπ - r(θ-sinθ) = r(π-θ) + rsin(θ) = r(π-θ) + rsin(π-θ),

since sin(θ) = sin(π-θ) from a trigonometric identity. Notice that the length of arc(AK) is given by r(π-θ) 

and the length of BK is given by rsin(π-θ), from which it follows that  LB = BK + arc(AK). In particular, 

this gives us that PF = 0 + arc(AF) = AIGF, the semi-circumference of the circle.]
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Figure 13; preliminary diagram
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all the same the line MC is equal to the line CI and to [added to] the portion of the semi-

circumference IA, and thusly of the others until the line PF finds itself equal to the entire semi-

circumference [AIGF; so PR is thus equal to the circumference of the rolling circle].

If the base PR is double the circumference of the rolling circle, then in this case the line LB is 

equal to the line BK and to double the portion of the circle AK, and thusly the line MC is equal 

to the line CI and to double the portion of the circle IA. And if the line PR is triple the 

circumference of the rolling circle, all the same, etc.

[It is somewhat unclear what Fermat is trying to say here (“Que sy la base PR est double de la 

circonféronce du cercle qui roule, en ce cas la ligne LB est esgale à la ligne BK et au double de la portion 

du cercle AK, …”[6, 377-378]) We ignore these remarks, as they have little bearing on his argument as a 

whole.]

            That thus supposed, to find the proportion of the rectangle PA [i.e. rectangle (PQAF) from 

figure 13] to the half-figure APF [the space under one half-arch of the cycloid, we will call it space(ALPF) to 

avoid confusion with the triangle(APF)], let us divide AF in as many equal parts as we will like, as AB, 

BC, CD, DE, EF. And next from points B, C, etc., let us draw the lines BLT, CMV, DNX, EOY 

parallel to PF.

[See figure 14. As with Roberval’s solution, here when dividing AF into equal parts, the number of equal 

parts is arbitrary, “as many equal parts as we will like”; the choice of five parts is merely for convenience.]

          To find the proportion that we are looking for [that of rectangle(PQAF) to space(ALPF)], it is 

necessary to compare every line PF, EY, DX, CV, BT, AQ to the lines PF, EO, DN, CM, BL.

[So, Fermat’s strategy in finding the area of space(ALPF) is to first compare all the lines of the larger 

rectangle(PQAF) (PF, EY, DX, …) to the lines of the space (ALPF) (PF, EO, DN, …) so as to find a ratio 

between the areas of the two spaces. In fact, when Fermat says, “all the lines,” he is implying that we must 

compare the sum of the lines of the rectangle to the sum of the lines of the space(ALPF) [6, note 1, pp. 
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378]; this implies, once again, that we use a Cavalierian method of indivisibles in proceeding, where the 

“sum of lines” of one space refers to the collectivity of indivisibles which comprise the area of that space.]

            Thus the lines PF, EO, DN, CM, BL [those of space(ALPF)] are equal, as we have said, to 

portions of the circle FA, GA, HA, IA, KA, and to [added to] straight lines [half-chords] EG, DH, CI, 

BK. It is thus necessary to compare every line PF, EY, DH, CV, BT, AQ [of the rectangle(PQAF)] 

with the portions [arcs] of the circle FA, GA, HA, IA, KA and with [added to] the straight-lines EG, 

DH, CI, BK.

[From Fermat’s preliminary remark earlier (“The principal property of the curve…”), each line of the area 

under the cycloid is equal to a corresponding half-chord plus a corresponding arc-length. For example, 

EO = EG + arc(GA). So, we recast the problem to finding a proportion between “the lines of the 

rectangle(PQAF)” and “half-chords of the circle plus arcs of the circle.”]

            Let us make this comparison separately. In comparing firstly every line PF, EY, DX, CV, 

BT, AQ, [the lines of the rectangle(PQAF)] with the straight lines BK, CI, DH, EG, etc.,[those of the 

semicircle AGF] it is obvious that all of these lines [that is, the “sum” of all of these lines] PF, EY, etc., to 

infinity, will have the same proportion to [the “sum” of all of] BK, CI, etc., than the one which is 

from the rectangle AP [rectangle (PQAF)] to the semi-circle FGA (because the lines AB, BC, CD, 

etc. are equal between them). And the aforementioned proportion [the proportion of 

area(rectangle(PQAF) to area(semicircle(AGF))] is of 4 to 1in the first revolution (of 8 to 1 in the 
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Figure 14; Fermat’s original diagram
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second, of 12 to 1 in the third, etc., to infinity) of which alone we will speak, the consequences 

for the others being too easy and the demonstration too obvious.

[Here we see that Fermat’s conception of the “indivisible” is decidedly more Cavalierian than Roberval’s. 

Fermat does not state that the infinity of lines represent an infinity of “little surfaces,” and in fact he does 

not seem to concern himself with their nature at all; he uses indivisibles only to allow himself to make 

comparisons between individual line segments of one space and another, and deduce ratios between the 

areas of the two. This conception carries with it some logical difficulties, since as we have said, the line 

having only a length, it would be impossible for any multitude of lines, no matter how compactly placed, to 

comprise a two-dimensional area. But, logical inconsistencies aside, Fermat’s observation is correct; the 

area of the semicircle is ½πr², and the area of the rectangle is πr · 2r = 2πr², and so 

area(rectangle(PQAF)) = 4 · area(semicircle(AGF)). 

After the second revolution of the circle, we have that 

area(rectangle(PQAF)) = 2r · 2πr = 4πr² = 8 · area(semicircle(AGF)), 

and after the nth revolution of the circle, 

area(rectangle(PQAF)) = 2r · nπr = nπr² = 2n · area(semicircle(AGF)). 

However, the consideration of multiple revolutions is unnecessary in solving the problem at hand.]

            Let us now compare every line [of rectangle(PQAF)] PF, EY, DX, CV, BT, AQ with portions 

[arcs] of the circle FA, GA, HA, IA, KA. If the portions AK, KI, IH, etc. were equal between 

them [that is, if the differences in length (AK, KI, IH, …) between each of the successive arcs (AK, AI, AH, …) 

were all equal to one another], we could say that every line PF, YE, XD, VC, BT, AQ [that is, the sum of 

the lines of the rectangle] would be double the portions FA, GA, HA, IA, KA [the sum of the arcs of the 

semicircle], because each one of the lines PF, YE, etc. is equal to the semi-circumference FA, 

which would consequently be the greatest of the arithmetic progression, in which the difference 

of the progression is equal to the smallest term [which is AK].

[Fermat assumes that the lengths AK, KI, IH, … are all equal, call this length d. Thus, the arcs AF, AG, AH, 

… have lengths which form an arithmetic progression, with the common difference between lengths of 
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consecutive arcs being d. Observe that, in figure 15, we may arrange the arc lengths into a right-triangle [1, 

pp. 158] with base AF, where the points K, I, H, … lie on the hypotenuse, each a horizontal distance of d 

from one another, because for each arc length, there is a corresponding point on the diameter (see figure 

14), meaning, if we “stack” each of the arc lengths on top of one another such that the vertical distance 

between each is equal to the common length c of segments of the diameter AB, BC, …, then the endpoints 

of the arc lengths actually align along a line of slope -c/d (figure 15).The triangle must then have a height 

of 2r, so the area of the triangle, i.e., the “sum” of all of the arcs AF, AG, AH, … is equal to 

½ · 2r · πr = πr². So the area comprised of all of these arc lengths is in fact the area of the circle which they 

partly describe, and is actually ½area(rectangle(PQAF)), which is the “sum” of the lines PF, YE, XD, …, 

each having length equal to AF (see figure 14), and so we conclude as Fermat says, that 

∑(arc lengths of semicircle AGF) = ½ Σ(lines of rectangle(PQAF) = ½ area(rectangle(PQAF)).]

But we cannot without paralogism [fallacious reasoning] determine this double proportion, because 

the straight lines AB, BC, etc., [on the diameter AF of the semicircle] being equal between them, it 

manifestly follows that the portions AK, KI, IH, etc. are unequal between them. And therefore 

we cannot say that all lines PF, EY to infinity, are double the portions FA, GA, etc. to infinity, 

which nevertheless I estimate that M. Roberval will have believed, not being himself amused to 

consider the inequality of the portions AK, KI, etc.
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Figure 15; determining the relationship between arcs of the circle and lines of the rectangle
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[Fermat thus concludes that we cannot assume that there exists an arithmetic progression between the arc 

lengths AK, AI, …, since we have previously assumed that AB, BC, …, which lie on the diameter, are each 

equal to one another, hence that Roberval must have erred at some point in his solution, despite Fermat 

having no knowledge of the route Roberval had taken in deducing his solution. As has been said, this 

mistake is one which Fermat retracts almost a week later in another letter to Mersenne, having discovered 

that it is irrelevant whether the arc lengths are in arithmetic progression or not; we cover this correction 

shortly. But, in the letter from which the current solution is taken, Fermat assumes anyway an arithmetic 

progression between the arc lengths and arrives at Roberval’s conclusion.]

            And in fact, if this double proportion were true, the proposition of M. Roberval would be 

as well. Because if all of [the “sum” of] the lines PF, EY, etc. [those of the rectangle] were double the 

[sum of] portions FA, GA, etc. [the arcs], since we have proven that the same lines PF, EY, etc. are 

quadruple the lines EG, DH, etc. [those of the semicircle (AGF)] it would follow that the 

aforementioned lines PF, EY, etc. would be to the sum of the portions AF, GA, and the straight 

lines EG, DH, etc. as 4 to 3.

[We have shown that, since 

area(rectangle(PQAF)) = 2 · ∑(arcs of semicircle(AGF), and 

area(rectangle(PQAF)) = 4 · area(semicircle(AGF)), then

area(semicircle(AGF)) + ∑(arcs of semicircle(AGF) = ¾ area(rectangle(PQAF)) = ¾ · 2πr² = ³⁄₂ · πr².]

Thus the sum of portions AF, GA, and the straight lines EG, DH, etc. is equal to the straight lines 

PF, EO, DN, etc. [see figure 14; the lines of the space under half of the cycloidal arch]. Thus the lines PF, 

EY, etc. would be to the lines PF, OE, etc. as 4 to 3. [that is, area(space(ALPF)) = ³⁄₂πr²]. And 

therefore, the rectangle AP [rectangle(PQAF)] would be to the semi-figure PAF [space(PLAF)] as 4 to 

3 and the entire rectangle PS [rectangle(PQSR)] would be to the figure PAR [the full cycloid arch] as 4 

to 3. Thus the rectangle PS is quadruple the rolling circle, thus the figure PAR would be triple the 

circle in the first revolution [meaning the area under one arch of the cycloid is three times that of the circle 
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which generated it.], and in the second quintuple, etc. as it would be easy to extend the 

demonstration.

[Since the arches formed by multiple revolutions of the generating circle do not overlap, then the area 

under the cycloid curve after n revolutions would be 3n times that of its generating circle. It is unclear as to 

why Fermat claims that after two revolutions the area under the cycloid curve is only quintuple that of the 

generating circle.]

            But I believe the proposition is false. And perhaps I have made and guessed the path 

which M. Roberval has held.                                                 ❖

            Returning to the problem roughly a week later [7, 397-399], Fermat tells Mersenne, “I 

take the feather to this stroke to justify M. Roberval against the all-too-hasty censure that I had 

made of his proposition about the Cycloid…” [7, 397], and he proceeds to argue that it does not 

matter whether the arcs of the semicircle are in arithmetic progression or not.

 René Descartes was also among those contacted by Mersenne for verification of 

Roberval’s result, and, accordingly, he too provided a solution in July 1638 [3, 407-412]. I do not 

present it here, but Descartes, in similar fashion to Fermat and Roberval, used an argument 

consisting of geometry and indivisibles. He too compared the “lines” or “indivisibles” of one 

space with those of another; where he differed from Fermat and Roberval was in the particular 

comparisons which he made.

 The above examples illustrate the popular mathematical attitudes towards the infinite in 

the early 17th century, and give a good indication as to the atmosphere surrounding one of the 

fundamental concepts of the calculus in an era which barely preceded its official development in 

the works of Newton and Leibniz. They are also a testament to the richness of certain 
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mathematical problems and concepts which allow for a variety of solutions and contain an 

abundance of interesting properties awaiting discovery. Of course, since we earlier parameterized 

the cycloid curve  by y = r(1-cosθ), x = r(θ-sinθ), today the determination of the area under one 

of its arches becomes the simple task of evaluating the definite integral 

which yields our desired result of 3πr². As intriguing as the inner-workings of the definite 

integral are, however, its evaluation above somewhat pales in comparison to the clever 

interweaving of geometry and the method of “indivisibles” which Roberval and Fermat each 

exhibited in solving the same problem. For Roberval to have conceived of a “companion” curve 

to the cycloid to assist him in his calculations, or for Fermat to have realized that a line under the 

cycloid curve is equal in length to the sum of a corresponding half-chord and arc from its 

generating circle, lends a certain uniqueness to either solution, as well as insight into the minds 

of either great mathematician; on the other hand, it also makes us appreciate the efficiency with 

which the integral calculus allows us to solve problems which at one point required significantly 

more exhausting arguments. This striking efficiency marks a turning point in the conception of 

the infinite, which certainly lies corollary to Cavalieri and his method of indivisibles, as well as 

to the mathematicians who used and refined this method in the solving of numerous problems 

throughout the 17th century.
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