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Diagram #1 
 

 The above diagram is a representation and transliteration of the ancient Babylonian 

tablet, IM 55357 from Tell Harmal.  IM 55357, which was likely written during the First 

Babylonian Empire (1900-1600 B.C.E.), has been used by historians of mathematics to prove 

that the Babylonians understood similarity.  On what grounds can they make this claim?  Is their 

assertion valid?  Let us examine the tablet. 

 In Eleanor Robson’s translation, the problem is stated as follows: 
 

A wedge. The length is 1, the long length 1;15, the upper width 0;45, the 
complete area 0;22 30. Within 0;22 30, the complete area, the upper area 
is 0;08 06, the next area 0;05 11 02 24, the third area 0;03 19 03 56 09 36, 
the lower area 0;05 53 53 39 50 24. What are the upper length, the middle 
length, the lower length, and the vertical? [10] 

 
Since the Babylonians used a base 60 number system, 12 20 could represent  

or , among other possibilities.  The Babylonians did not use decimal places in 
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their mathematics because the results would still be consistent no matter where the decimal place 

happened to fall.  For now, we shall insert decimal places, indicated by semicolons, arbitrarily. 

 Converting the numbers to base 10, we can rewrite the problem as: 
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Diagram #2 

 
A wedge. The length is 1, the long length 1.25, the upper width .75, the 
complete area .375. Within .375, the complete area, the upper area is .135, 
the next area .0864, the third area .055296…, the lower area .098304... 
What are the upper length, the middle length, the lower length, and the 
vertical?  

 
Our next task is to interpret the “upper length,” “the upper area,” and these other ancient 

descriptions of sides and regions.  

 Since the areas are labeled on the diagram, we can interpret “the complete area” 

to be the area of .  The “upper area” corresponds to .  The “next area” is the 

area of .  The “third area” is the area of , while the “lower area” is the area 

of .  “The length,” “the long length,” and “the upper width” could be AC, BC, and 

AB respectively.   
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  What exactly is the problem asking?  What are “the upper length,” “the middle length,” 

“the lower length,” and “the vertical”?  We cannot be certain, as different words are used to 

identify the lengths in the solution than the words used in the problem.  (Because of these 

differing words, we cannot even be sure when the Babylonians decided that they reached a 

solution.)   

 While we may not be able to reach a consensus on the lengths which the problem 

requests, we do note that the tablet provides solutions for BD, AD, and AE.  It would presumably 

continue to the next leg of , ED, but the scribe never finished.  For now, let us set aside 

which lengths the tablet asked for explicitly. If we deal exclusively in terms of the answers found 

and the methods employed, we can phrase the problem like this: 

  
 

Diagram #3 
 
 

In , , , and .  The area of is .375, the area of is 

.135, the area of is .0864, the area of is .055296…, and the area of  is 

.098304…  Solve for BD, AD, AE, and ED.  (For more information on which lengths exactly the 

problem is solving for, the reader is invited to consult the Appendix.) 

 Right-angled similar triangles leap out at the reader, but since none of the angles are 

labeled, can we distinguish between a right angle and one of 89.75 degrees?  As we will observe 

later, the Babylonian method for finding area did not involve multiplying an altitude by the base 
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of the triangle, but rather multiplying together the two legs of a triangle.  In order for their 

method to work, they had to have been dealing with right triangles.  To what extent they 

recognized the triangles as “right” is an entirely different question.  Perhaps they developed 

theorems for lines meeting in a T-shaped, perpendicular formation.  They may have identified 

right triangles as half-rectangles.  In any case, since the Babylonian solution holds true only for 

right-angled triangles, we shall assume, as many scholars have done, that , 

and  are right angles. 

 Armed with this information, we can now solve the problem by using simultaneous 

equations.  We can solve for BD and AD, the legs of “the upper triangle,” with two sets of 

equations based on similarity and area: 

   ΔABC  ΔDBA  
     Therefore,    

    
         (1) 

 

                      (2) 

We can solve for BD by substituting (1) into (2): 

 

 
 

 Substituting  into equation (1), we can obtain: .  

Did the ancient Babylonians use such methods?  Did they understand the concept of 

similar triangles?  If so, to what extent did they understand it?  Did they use similarity to show 

that the sides of two triangles are proportional?   Did they realize that the ratio between the areas 
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of two similar triangles is equal to the ratio of the sides squared?  Did they know that area equals 

?   Did they use direct substitution?   

To find out, let us examine their solution to IM 55357.  On the next two pages, I have 

presented two translations in a two-column format, one by Eleanor Robson, professor at the 

University of Cambridge, and the other by Jens Høyurp, author of Lengths, Widths, and Surfaces 

(2002) and professor at the University of Roskilde in Denmark.  The translation is on the left 

hand side, while the modern equivalent can be found in the right column.    
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Robson 
You, when you proceed: solve the reciprocal of 1, 
the length. 
 
Multiply by 0;45. You will see 0;45. 
 
Multiply 0;45 by 2.  You will see 1;30. 
 
Multiply 1;30 by 0;08 06, the upper area. You will 
see 0;12 09 
 
What squares 0;12 09? 0;27, the [length of the 
upper] wedge, squares (it). 
 
Break off [half of] 0;27. You will see 0;13 30. 
 
Solve the reciprocal of 13;30. 
 
Multiply by 0;08 06, the upper area.  You will see 
0;36, the dividing (?) length of 0;45, the width. 
 
Turn back.  Take away 0;27, the length of the 
upper wedge from 1;15.  You leave behind 0;48.  
 
Solve the reciprocal of 0;48.  You will see 1;15. 
 
Multiply 1;15 by 0;36.  You will see 0;45. 
 
 
Multiply 0;45 by 2.  You will see 1;30. 
 
Multiply 1;30 by 0;05 11 02 24.  You will see 0;07 
46 33 36. 
 
What squares 0;07 46 33 36? 0;21 36 squares it. 
 
The width of the second triangle is 0;21 36.   
 
Break off half of 0; 21 36.  You will see 0;10 48. 
 
Solve the reciprocal of 0;10 48. 
 
Multiply by… 
 
[10] 
 

 

 

=  

2 =  

 

 

 

 

 

  
 

 

 

 

 

 

 

 
 

 

 

The scribe did not finish the text. 
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Høyrup 
 
You, to know the proceeding, igi 1, the 
length detach, to 0;45 raise 
 
0;45  you see. 0;45 to 2 raise. 1;30 you see, 
to 0;08 06, the upper surface 
 
Raise, 0;12 9 you see. (By) 0;12 9, what is 
equalside? 0;27 is equalside. 
 
0;27 the width, 0;27 break, 0;13 30 you see. 
Igi 0;13 30 detach, 
 
To 0;08 06 the upper [surf]ace raise, 0;36 
you see, the length (which is) the 
counterpart of the length 0;45, the width. 
 
Turn around. The length 0;27, of the upper 
triangle, from 1;15 tear out, 
 
48 leave. Igi 48 detach, 1;15 you see, 1;15 to 
0;36 raise. 
 
0;45 you see. 0;45 to 2 raise. 1;30 you see, 
to 0;05 11 02 24 raise, 
 
 
0;07 46 33 36 you see. (by) 0;07 46 33 36, 
what is equalside? 
 
0;21 36 is equal side, 0;21 36 the width of 
the 2nd ‹tria›ngle, 
 
The moiety of 0;21 36 break, 0;10 48 you 
see. Igi 0;10 48 detach. 
 
To … 
 
[7] 
 
 
 
 
 

 
 
 

 =  

 

2 =   

 

  

 
  
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1.25(6)=.75   

 

 

 
 

 
 
 

  

 
The scribe did not finish the text 
 
 
 
 
 
 



These two translations are pronouncedly different from one another.  For instance, 

Robson translates the first step as “solve the reciprocal of 1, the length,” while Høyrup writes, 

“You, to know the proceeding, igi 1, the length detach.”  In his translation, Høyrup intends to 

remain as close to the intent of the actual text as possible.  Thus, instead of writing “solve the 

reciprocal,” he uses the Babylonian word for reciprocal, “igi.”  The word “detach” indicates that 

we are focusing on one side of a triangle in order to perform mathematical transformations.   

    In the second step, Robson writes “Multiply by 0;45.  You will see 0;45,” while 

Høyrup transcribes “to 0;45 raise; 0;45 you see.”  We can see that Høyrup is attempting to give 

us a more accurate picture, even down to the Babylonian use of the object-subject-verb 

formation in “0;45 you see.”  Høyrup is continually mindful of the geometrical underpinnings.  

He uses the term “raise” instead of multiply, because he views Babylonian multiplication to have 

a connotation of scaling or “raising” a side of a geometric figure.  He also underscores the fact 

that Babylonians did not divide, but only multiplied by reciprocals.   

We see the same terminology in the third as well as the fourth step.  Robson translates the 

third step using the word “multiply”: “Multiply 0;45 by 2. You will see 1;30,” while Høyrup 

interprets it with “raise”: “0;45 to 2 raise. 1;30 you see…”  Likewise, in the fourth step, Robson 

transcribes, “Multiply 1;30 by 0;08 06, the upper area.  You will see 0;12 09,” while Høyrup 

writes, “Raise, 0;12 9 you see.” 

In the fifth step, Robson translates, “What squares 0;12 09? 0;27, the [length of the 

upper] wedge squares (it),” while Høyrup records, “(by) 0;12 9, what is equalside? 0;27 is 

equalside.”  Høyrup believes that when Babylonians took the square root of a number k, they 

were actually finding the side of a square with area k.  Consequently, they would refer to a 

square root by the same terminology with which they referred to a square, “equalside.” 
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 As both Høyrup and Robson note in the sixth step, instead of taking one-half of 

something, the Babylonians use the expression “Break off 0;27” or “0;27 break.”  In the seventh 

step, we see the same “reciprocal”/“igi-detach” terminology employed by the two different 

translators.  

The first part of the eighth step, as translated by Robson is, “Multiply by 0;08 06, the 

upper area,” while Høyrup sets down, “To 0;08 06, the upper [surf]ace raise…”  Høyrup believes 

that the Babylonians understood area in a different sense than we did and thus uses the term 

“surface.”   

In the second part, Robson’s translation has, “You will see 0;36, the dividing (?) length of 

0;45, the width,” with Høyrup’s as, “0;36, you see, the length (which is) the counterpart of the 

length 0;45, the width.”  Høyrup justifies his belief in Babylonian similarity with this phrase, 

“counterpart,” while Robson, as evidenced by her question mark, appears unsure as to the true 

interpretation of this word, although “dividing length,” which is quite different from 

“counterpart,” is her best interpretation. 

“Turn back” is the next line of the tablet, although Høyrup translates it as “turn yourself 

around.”  Høyrup implies that the line is simply a transition to a new section.  However, I believe 

that the idea of turning backward or around may indicate the scribe’s identification of the 

recursive nature of his method.  First, using the ratio of the bases of and the area of 

subtriangle , the scribe finds the subtriangle’s bases, BD and AD.  He repeats the process 

to find AE, but now he uses the ratio of the bases of and area of subtriangle .  

Although he did not finish the tablet, he seemed to be repeating an algorithm. The Babylonians 

seized upon an easily repeatable method that would enable them to find the sides of successive 
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subtriangles within a large triangle. Perhaps the tablet went unfinished because the scribe felt 

that the method had been sufficiently illustrated for the reader to continue on his own.  

Our understanding of IM55357 hinges upon two recursive procedures, the first of which 

we produce as the formula .  This procedure is used twice, and in its 

second iteration, it yields .  How did the Babylonians arrive at this 

procedure?  Writing in the 2000 edition of Crest of the Peacock, George Gheverdese Joseph, 

professor at the Universities of Exeter and Manchester, contends that to produce this formula, the 

Babylonians employed similarity.  He implies that they would have used the following equations 

to derive their method:  

First, since ΔABC  ΔDBA , . 

Second,  

 
Indeed, these equations can be used to justify the method represented by the above formula, as: 

 

 

 

=  

 
 

The second recursive procedure can be expressed with the formula: 

.  It is used only once, but I call it recursive, because I imagine the 

scribe would have continued to employ it if he had finished the tablet.  This procedure can be  
 
justified by: 
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Joseph asserts that the second equation was derived with the Pythagorean Theorem [8].  There is 

simply no evidence to support his claim.  The reasoning presented above, although in modern 

terms, is fairly simple and not beyond the grasp of the Babylonians who could calculate areas of 

triangles.  Joseph’s claim that the Babylonians used similarity presents some difficulty.  Is his 

interpretation a modern imposition?  Since the Babylonians had no word for “angle” in their 

language, nor did they use parallelism, it seems strained to attribute to them a modern 

understanding of similar triangles. 

 But many historians of mathematics do believe the Babylonians understood similarity.  

Otto Neugebauer, one of the pioneers in interpreting ancient Babylonian mathematics, wrote in 

The Exact Sciences in Antiquity (1952), “The concept of similarity is utilized in numerous 

examples” [9].  Unfortunately, he did not elaborate.  Jöran Friberg writes in “Methods and 

Traditions of Babylonian Mathematics,” that the Babylonians must have had a similarity theorem 

along these lines:  “The inclination, i.e., the ratio between the front and the flank, is the same for 

a given right triangle and for every subtriangle cut out of the given triangle by a perpendicular to 

either the front, the flank, or the diagonal of the given triangle” [4].     

flank

fr
on
t flank

fron
t

 
 

Diagram #5 
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In other words, the Babylonians may have developed a theorem along the lines of: for every right 

triangle formed within a larger right triangle, the legs of any subtriangles will be of the same 

ratio as the legs of the larger triangle, as illustrated in Diagram 5 above.  

In the article “Mathematik,” Friberg adds that while parallel lines and similar triangles 

are never explicitly mentioned, they exist in “a restricted sense,” as the concepts of “equidistant 

lines” and “proportional triangles” are intuitively obvious [5].  His assertion that the Babylonians 

recognized that certain ratios of legs of right triangles were equal is strengthened by the fact that 

there exists a phrase for “the ratio of length to front.”   Friberg also wrote very emphatically in a 

response to my e-mail inquiry, “Similarity arguments are one of the cornerstones of Old 

Babylonian geometry” [6].   

 Jens Høyrup presents an interesting case for a Babylonian understanding of similarity in 

Lengths, Widths, and Surfaces.  As noted when discussing his translation, Høyrup believes that 

all Babylonian algebra had a corresponding geometrical foundation.  He writes that the scribe 

calculated the ratio between the two bases of , AB and AC, and understood that the same 

ratio would apply to .  The scribe then multiplied by twice this ratio  to 

produce a square of side BD.  The scribe finds BD next, by taking the square root of the 

preceding expression [7]. 

Seeing the geometric argument helps one to understand Høyurp’s conclusion.  The scribe, 

he supposes, began with .  He multiplied the area of the triangle by two to produce the 

area of a rectangle. (Diagram 5a) He then multiplied the rectangle’s area  by to 



   
 

 

14 

produce the area of a square of side BD, since  (Diagram 5b) He could take the 

square root of his result to find BD [7].  

 
 
    (a)    (b) 

 
 

Diagram #5a and 5b. 
 

Høyrup notes subsequently that the same algorithm is used to find the bases of  

He argues that the use of the term, gaba, or “counterpart” to refer to the legs of the triangles 

shows that the Babylonians understood similarity on a basic level.  Another set of tablets, BM 

85194 #25-26, involving the construction of siege ramps, provides further evidence for Høyrup’s 

claims.  In BM 85194, the Babylonians, when given the area of a triangle, double it to produce a 

rectangle.  They then scale it by the ratio of its sides to produce a square.  By taking the square 

root, they can find one of the sides of the triangles [7].  This will be discussed later in more 

detail. 

Indeed, because it involves an area multiplied by a ratio,  seems 

likely to be an equation involving scaling.   Once we have established the scaling method, as 

Høyrup suggests, it does not seem too large a stretch for them to realize that the legs of any inner 

right triangle are in the same ratio as the legs of the outer right triangle [7]. 
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 E.M. Bruins dissents from the idea that the Babylonians understood the concept of 

similar triangles.  While Joseph writes that the Babylonians would have used similarity to 

conclude, in the diagram below, that  Bruins believed that they would have begun 

from a different equation, , which they would derive using the procedure 

below [1]:  

 
Diagram # 6 

 
 

 

 
 

 
 

 
 

 
 

 
 In a more general notation, the Babylonians may have realized that, given a right triangle 

and a right subtriangle, the longer base of the initial right triangle multiplied by the shorter base 

of the subtriangle equals the shorter base of the initial right triangle multiplied by the longer base 

of the subtriangle.  We can easily see how the Babylonians could have used the above theorem to 

solve a problem that necessitates similar triangles in Joseph’s rendition.  Joseph’s idea that the 
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Babylonians would have realized that  and then cross-multiplied may be a modern 

imposition. 

 Bruins’ argument encounters obstacles, however, because, this theorem can be proven 

only when the base of the subtriangle is parallel to the base of the larger triangle.  Otherwise, let 

us return to Diagram 6 and this time deal with subtriangles created by drawing an altitude in the 

larger triangle, namely  and . 

 

 

 

 
 

In other words, the product of the shorter and longer legs of the initial triangle equals the product 

of the altitude of the initial triangle, which is also one of the bases of the subtriangle, and the 

hypotenuse. 

 But to reach the equation used in IM 55357, we would need to show that 

 or that the product of the shorter leg of the initial triangle and the longer 

leg of the subtriangle equals the product of the longer leg of the initial triangle and the shorter leg 

of the subtriangle.  We can remark only that if the Babylonians could have realized the 

conclusion for a subtriangle with a base parallel to the initial triangle, they would have also 

assumed it to hold true for the relationship between and all other right 

subtriangles, included.  It seems as if this assumption would lack certainty.    

 An interesting question about the problem concerns the scribe’s solution for AD. He uses 

to solve for AD.  Why didn’t he use the equation 
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 to solve for AD?  If the scribe had been familiar with Bruins’s method, 

it might have been more logical to use the above equation, as he would have understood what we 

demonstrated above: .  While Bruins’s explanation of similarity may 

apply for other tablets, it does not seem to ring true in the context of this particular tablet. 

 I propose the following possibility: if the Babylonians had experimented with right 

triangles and right subtriangles, they may have noticed that the ratio between the areas of the two 

triangles equals the ratio between two equivalent sides squared.  So, the Babylonians would have 

noted that:  

 

 
    
 

 

 

The assumption that the Babylonians would have noticed that the ratio of the sides squared is 

equal to the ratio of the areas of the triangles appears more complicated than that of Friberg’s, 

that the ratio of the sides of similar triangles is equal.  If the Babylonians did understand this 

theorem, how might they have derived it?    

 It seems likely that they might have asked themselves such questions as, “How many 3-4-

5 right triangles could I fit into a 6-8-10 right triangle?” They may have initially supposed the 

answer to be two, because 6-8-10 is 3-4-5 doubled.  But after drawing the diagram, they would 

find, to their surprise, that the answer was four.  From there, they could experiment by fitting a 

variety of triangles into one another, eventually developing a general rule for the ratio between 

the area and the sides.  The very existence of IM 55357 illustrates that the Babylonians must 
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have experimented with areas of smaller triangles within larger ones.  To create the area of 

, it is likely that the scribe multiplied by .36 or 0;21 36.  For , he 

multiplied by .2304 or 0;13 49 26 24.   

The theorem could have also been obtained in the following fashion: 
 
 

 
 

Diagram #7 
 
 

 
Let be a right isosceles triangle.  QS divides  into an isosceles triangle, 

. Let y be a leg of .  Let x be a leg of .  It is then easy to develop the rule: 

.  Is it possible that the Babylonians would have developed this theorem 

for more advanced cases than just isosceles triangles?  Perhaps, but for the time being, we cannot 

produce their exact line of reasoning. 

Friberg suggests in “Mathematik” that the Babylonians used similarity to derive 

something similar to the above result.  If we return to the triangle of IM 55357, similarity shows 

us that:  
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.  

 
From there, we can conclude that: 

 

. [5] 

 

Friberg’s idea of a theorem relating the areas of the triangles to the sides squared adds yet one 

more to our wide variety of possibilities as to what extent the Babylonians understood similarity.  

At the very least, we know that, to use Friberg’s terminology, they understood that the ratio of 

the legs of a right triangle is the same for any smaller right triangle cut out of it.  But did they 

know more?  Did they, as Høyrup suggests, perform operations involving scaling triangles to 

rectangles to squares? 

 To answer this question, it may be worthwhile to examine another tablet.  BM 85194 #26 

may enable us to gain some more insight into the Babylonian perspective.  BM 85194 presents 

the problem of a partially constructed siege ramp.  Given the volume of a completed siege ramp 

and the dimensions of the ramp already constructed, how much farther does one need to extend 

the ramp horizontally to reach the city walls?  It is extremely unlikely that this problem was used 

in a realistic context.  Soldiers would not have known the volume of the unfinished ramp, nor 

would they stop building in order to measure how much farther to build, instead of calculating 

the geometry at the beginning.  Furthermore, the ramp would not need to touch the edge of the 

wall exactly, but could exceed it slightly.  Because of the unrealistic nature of this problem, we 

can conclude that it was used in a textbook or other pedagogical context.   

 Below, I present the diagram to which the tablet refers as well as a two-column 

explanation with Høyrup’s translation on the left and a modern interpretation on the right [7]. 
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Diagram #8

 
Of earth, 1;30.  A city inimical to Marduk I 
shall seize. 
 
Away from the fundament of the earth a 
length of 0;32 in front of me I have gone. 
 
0;36 the height of the earth.  The length 
what I must stamp so that the city 
 
I may seize?  The length in front of the 
hurhurum (the vertical back front) reached 
so far what? You, 
 
Igi 0;32 detach, 1;52 30 you see. 1;52 30 to 
0;36, the height 
 
 
Raise, 1;7 30 you see. Igi 6, the fundament 
of the earth, detach, 0;10 you see. 
 
1;30, the earth, to 0;10 raise, 0;15 you see, 
0;15 to 2 repeat. 
 
0;30, you see, 0;30 to 1;7 30 raise, 0;33 45 
you see 
 
0;34 45, what is equalside? 0;45 is 
equalside, 0;45 the height of the city wall. 
 
45, the height of the city wall, over 36, the 
height of the earth, what goes beyond? 0;09 
it goes beyond. 
 

 
The total volume (V) of the earth that the 
ramp will occupy is 1.5 cubic units.   
 

The length(l) of the existing ramp is   

 

The height(h) of the existing ramp is  

 
Find the distance upward, , and across, d, 
that I would need to travel to seize the city. 
 

Find the reciprocal of   

 

;  

 

;  

 

 

 

 

 
 

 



   
 

 

21 

Igi 1;7 30 detach, 0;53 20 you see, 0;53 20 
to 0;09 raise.   
 
8 you see, 8 the length in front of you you 
stamp. 

;  

  

 
 

 To analyze this procedure from a modern perspective, we need to look at the method 

represented by the formula, .  Since , we can rewrite the 

left side of the equation as .  We notice that the triangles formed by h and l 

and formed by and d are similar.  Therefore, .  From this equation, we can conclude that 

.  Knowing , we can easily find .  

We then use to solve for d.  But we are faced with a recurring problem of interpretation: 

while this reasoning does provide a justification for the method used in the tablet, we have no 

way of knowing whether it was in fact the reasoning the Babylonians used in creating BM 85194 

#26.   

 In Lengths, Widths, and Surfaces, Høyrup presents a geometrical interpretation of the 

Babylonian method.  He notes that the tablet begins by taking l/h, which he claims they treated 

as the scaling ratio that would make the length of the triangle equal the width, 9/8.  Then, the 

scribe takes the volume of the entire space and divides by the width, w, to produce a two-

dimensional triangle (8a).  The scribe doubles the area of the triangle to produce a rectangle (8b).  

He then multiplies the area by l/h to scale l + d to and produce a square of side . (8b) 
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He then takes the square root of the area to find .  The scribe subtracts h to find .  He 

then multiplies by h/l to reverse the operation performed on  and find d [7]. 

 

 
(9a) 

 
 
 
 
 

(9b)  
 

 
(9c) 

 
 

Diagram # 8 
 
 The question demanded by Høyrup’s interpretation is: How does the scribe realize that 

multiplying by the area by  transforms one side of the rectangle, to ?  One 

possibility is that the Babylonians had developed similarity, as in the proof we examined above.  

Another is that they realized, perhaps because of some notion of slope, that the ratio of the two 
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sides on the hypotenuse of any subtriangle will be the same as the ratio of sides of the original 

triangle.  Thus, by finding the ratio of the sides of the partially-built ramp, the scribe could use 

that ratio to multiply by the area of the completed ramp and produce a square.  It is difficult, 

though, to find a geometric image corresponding to the transformation of back into d by 

multiplying by . 

IM 55357 and BM 85194 #26 show us that the Babylonians had a limited understanding 

of similarity.  At the very least, as per Friberg’s claim, they understood that the ratio of the legs 

of any triangle and the ratio of the legs of any right subtriangle are equal.  Høyrup notes that in 

both tablets, the Babylonians could scale one side of a two-dimensional rectangle to produce a 

square of proportional area.  In BM 85194, the Babylonians seemed to have been scaling a 

scalene triangle to an isosceles triangle [7].  We know that the Babylonians developed other 

problems in which they scaled rectangles to squares of equal area [1].  There is still much left 

unknown, but it seems that in addition to scaling to equal area, the Babylonians also scaled 

rectangles to proportional area. 

In any event, Euclid writes in Book VI of Elements, “In a right-angled triangle, if a 

perpendicular is drawn from the right angle to the hypotenuse, the triangles on each side of it are 

similar to the whole triangle and to one another” [3].  It is highly probable that the Babylonians 

reached a similar claim seventeen centuries before, which is quite the testament to their 

civilization.   
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Appendix: What exactly is IM55357 solving for? 

 
Taha Baqir, the former curator of the Iraqi Museum, who introduced the tablet in the 

1950 edition of the journal Sumer, presents one opinion.  He translates “width” as 

“perpendicular,” and, hence, believes it refers to the three altitudes in the diagram, AD, ED, and 

EF.  He believes “the upper length” to be BD, because BD is the first length the tablet finds [2].  

He translates ush-LUM, Robson’s “middle length” [10], as “segment” or “partial length” with the 

connotation of a length cut from another length.  Since DC is cut from the hypotenuse, BC, and it 

is the next length found, he identifies DC as “the middle length.”  The “third length” he 

interprets as either of the two sides AE or EC [2].   

Jöran Friberg adopted a different approach in his 1981 publication, “Methods and 

Traditions of Babylonian Mathematics.”  He writes that in asking for the upper, middle, and 

lower lengths, the problem requests each subtriangle’s short leg, BD, DF and AE.  Friberg does 

not comment as to the use of the word “vertical,” but since he views the entire tablet as a 

recursive formula, he writes that “the problem consists in computing [all] the sides of the 

subtriangles” [2]. 

George Gheverghese Joseph believes that “length” makes reference each of the inscribed 

triangles’ short leg, namely BD, AE and DF, while “width” indicates the altitude of the triangle, 

AD [8]. 

According to Jens Høyrup, the tablet uses the Babylonian word for “length,” ush, in each 

of “the upper length,” “the middle length,” and “the lower length.”  He also uses ush to identify 

the longer leg of , AC.  Therefore, it is likely that the scribe referred to the corresponding 

side in each of the subtriangles.  In other words, he intended AD, DE and EF to be the upper, 
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middle and lower lengths, respectively. Høyrup translates “the vertical” as “the descendent,” and 

he believes that it refers to one of the sides of the remaining triangle, EC or FC [7]. 
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