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The Irish mathematician, astronomer, and physicist Sir William Rowan Hamilton made an enormous
number of contributions to his fields. As a result, these fields have immortalized Hamilton in the numerous
equations and concepts which bear his name. In 1833 he published a paper describing a characteristic function
determining the behavior of rays. When Hamilton applied this function to Fresnel’s equations for the wave
surface of biaxal crystals he was able to predict the phenomenon of conical refraction. The mathematical
discovery for which Hamilton is perhaps best known came in 1843 when he described quaternions. Twenty
nine years after the discovery of conical refraction and nineteen years after that of quaternions, Hamilton
wrote a paper which combined the two ideas to give a new quaternion form of the equations for a wave surface
for biaxal crystals. This paper was entitled On Some Quaternion Equations Connected with Fresnel’s Wave
Surface for Biaxal Crystals. It did not present any new physical or mathematical concepts, but, because it
combines some of Hamilton’s greatest ideas, it provides an insightful summary of the highlights of his work.

The Life of Hamilton

William Rowan Hamilton’s life began in Dublin, Ireland in 1805. When only three years old Hamilton
went to live with his uncle who also became Hamilton’s tutor in preparation for university study. Hamilton’s
brilliance was evident early on, as was perhaps most obvious in his familiarity with thirteen languages by the
time he was thirteen. In addition, he read extensively in the subjects of astronomy, religion, mathematics,
literature, and geography. Hamilton began study at Trinity College of Dublin in 1823 and received an
unprecedented number of awards during his three years there. He then became the Royal Astronomer
of Ireland and professor of Astronomy at the University of Dublin. Hamilton’s research in mathematical
optics began when he was only seventeen. This research resulted in his famous “Theory of Systems of
Rays”, published in 1828. Hamilton sought to “reduce optics to a mathematical science in terms of his
Characteristic Function”(Crowe, 21). Once he had achieved this, Hamilton went on to apply these methods
to dynamics. Unlike many mathematicians, Hamilton’s work brought him considerable fame. This was
particularly true when, in 1842 and still less than thirty years old, he theorized the phenomena of internal
and external conical refraction. When this prediction was verified experimentally by Humphrey Lloyd it
excited scientists across Europe and was called “perhaps the most remarkable prediction that has ever been
made”(Crowe, 21). Hamilton’s fame continued to grow, and in 1835 he was knighted and received a medal
from the Royal Society. Two years later he was elected president of the Royal Irish Academy. He continued
his mathematical work until 1865, the year of his death.

Given the astounding number of accomplishments Hamilton achieved, it is surprising that some people
have considered his life a tragedy. The list of Hamilton’s contributions to science is almost endless and
includes his Hamiltonian mechanics (which became vital to the fields of quantum mechanics and electromag-
netism), the invention of Icosian Calculus, Hamilton’s principle, the Hamilton-Jacobi equation, Hamiltonian
groups, and the discovery of quaternions. It is the last of these contributions, quaternions, which has caused
some people to view Hamilton’s life as tragic. Hamilton discovered quaternions in 1843 and spent the rest
of his life devoted to them. He strongly believed that they represented the future of mathematics, but
many mathematicians have viewed it as “one of many comparable mathematical systems and . . . it offers
little value for application”(Crowe, 18). This point of view has been argued against by many important
scientists (Whittaker, Birkhoff, Dirac, et al.), who felt that quaternions would become more widely used in
the future. Quaternions have seen some increased popularity due to their applications to computer science,
but they have become nearly extinct in other fields. It is not possible to determine whether quaternions will
someday become as important as Hamilton expected, nor to judge whether he wasted the last twenty-two
years of his life on a delusional“belief that quaternions held the the key to the mathematics of the physical
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universe”(Bell,404). Despite this, the amount of effort spent in seeking out and developing quaternions along
with the simplifications they made to systems such as the biaxal crystal make it easy to see why Hamilton
would be convinced that quaternions were the future.

The Biaxal Crystal and Conical Refraction

In 1832 Hamilton began a study of the wave surface theorized by Augustin-Jean Fresnel which describes
light propagation from within a biaxal Crystal. He based this study on his general theory developed in
the Third Supplement to an Essay on the Theory of Systems of Rays . The result of this study was the
prediction that the geometry of such a crystal should give rise to two previously unobserved phenomenon:
internal and external conical refraction. At Hamilton’s request, Humphrey Lloyd experimentally verified the
prediction using a piece of arragonite and published his results in 1833. This was arguably the first time that
the mathematical analysis of a physical phenomenon preceded its experimental verification. In addition,
the discovery greatly advanced the development of optics by providing a strong argument in support of the
theory that light has a transverse wave nature.

Hamilton based his work on the idea that a light wave passing through a medium causes a small dis-
placement of the molecules within that medium. The most modern and physically accurate technique for
describing the optical properties of a medium such as a biaxal crystal uses the dielectric tensor ε and the
tensor of magnetic permeability µ (see, for instance, Born and Wolf’s Principles of Optics). However, since
v = c/

√
µε (where v is light’s velocity in some medium and c is its velocity in a vacuum), perhaps a more

intuitive approach is to focus solely on the velocity of light through the crystal. In order to investigate the
behavior of light in a crystalline material, it is useful to employ geometrical constructions which determine
the propagation velocities and vibration directions of the wave. Such constructs are called wave surfaces.
Since crystals are effectively rigid bodies, motion within them depends only on three numbers (Thornton
and Marion, 447). The simplest shape that such a body can posses is an ellipsoid, so the motion of any
rigid body can be represented by the motion of an equivalent ellipsoid. When this ellipsoid is based on the
refractive index of the crystal it is called “the index ellipsoid”. Its equation is

x2

A2
+
y2

B2
+
z2

C2
= 1,

where A is inversely proportional to the velocity of wave propagation in the x direction, B to that in the y
direction, and C in the z direction (to be precise, A = (c/

√
µ)v−1

x , B = (c/
√
µ)v−1

y and C = (c/
√
µ)v−1

z ).
This is called the index ellipsoid because the refractive index in the x direction is simply

√
µA and similarly

for the y and z directions. Now let ~k be a unit vector normal to a wave. The propagation of this wave within
a crystal gives rise to vibrations in two directions perpendicular to ~k. When a plane is drawn through the
origin of the ellipsoid and perpendicular to ~k, an ellipse is formed by the intersection of this plane and the
ellipsoid (Figure 1).

Figure 1: Index Ellipsoid. ~k is normal to a wave propagating through the crystal.

3



The semiaxes of this ellipse point in the directions of vibration and the lengths of these axes are proportional
to the velocity. Since this ellipse is perpendicular to ~k and constrained by the ellipsoid, it must satisfy the
equations

xkx + yky + zkz = 0 and
x2

A2
+
y2

B2
+
z2

C2
= 1,

These properties allow for the derivation of Fresnel’s equation of wave normals, which is (Born and Wolf,
806):

k2
x(v2

p − v2
y)(v2

p − v2
z) + k2

y(v2
p − v2

z)(v2
p − v2

x) + k2
z(v2

p − v2
x)(v2

p − v2
y) = 0 (1)

Where kx is the x component of ~k, so that (1) is the equation of a quadric surface in “k space”. The property
which distinguishes biaxal crystals from other forms is that they have three different refractive indices and
therefore A 6= B 6= C. To see the consequences of this property assume A < B < C, which implies that
vx > vy > vz. Considering just the ky, kz plane by setting kx = 0 in (1) results in two solutions. The first is
simply v2

p = v2
x and the other is

k2
y(v2

p − v2
z)(v2

p − v2
x) = −k2

z(v2
p − v2

x)(v2
p − v2

y)

⇒ k2
y(v2

p − v2
z) = k2

z(v2
y − v2

p)

⇒ v2
p(k2

y + k2
z) = v2

zk
2
y + v2

yk
2
z ,

but k2
y + k2

z = |~k| when kx = 0 and being a unit vector |~k| = 1, so

v2
p = v2

zk
2
y + v2

yk
2
z

Since vp is a constant it is permissible to set vpky = y and vpkz = z, which makes the two solutions to
Fresnel’s wave equation in the yz plane

v2
x = v2

p(1) = v2
p(k2

y + k2
z) = v2

pk
2
y + v2

pk
2
z = y2 + z2

⇒ y2 + z2 = v2
x (2)

and

v2
p = v2

zk
2
y + v2

yk
2
z ⇒ (v2

p)2 = v2
zv

2
pk

2
y + v2

yv
2
pk

2
z = v2

zy
2 + v2z2

⇒ (y2 + z2)2 = v2
zy

2 + v2
yz

2 (3)

Notice that (2) is the equation of a circle, while (3) is the equation of an oval. The other two planes give
similar results (Figure 2). Extending this to three dimensions creates the wave surface as seen in Figure 3.

Figure 2: The projections of Fresnel’s wave equations onto the three planes.

Two lines can be drawn through the origin to form N
′

1ON
′

2 and N
′′

1 ON
′′

2 . A plane perpendicular to either of
these lines forms two concentric circles when it intersects the wave surface, which indicates that the surface
is symmetric about these lines. These lines are called the optic axes of the crystal and the fact that there
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Figure 3: An octant of the wave surface of a biaxal crystal.

are two such axes in biaxal crystals why those crystals are so named. The utility of the wave surface is that
it indicates a symmetry in light wave velocity about the optic axes.

Consider a wavefront (WF ) incident on a rectangular biaxal crystal (Figure 4). If the angle of incidence
of WF is such that the refracted wave front ABCD is normal to an optic axis, the ray QR can be refracted
along any direction lying on the surface of a cone. This occurs because light follows the path of least time
(Fermat’s principle; Pedrotti, 20) which will be the path with greatest velocity. As seen, there are an infinite
number of points with the same velocity lying on the edge of a circle for each plane perpendicular to the
optic axis, so light can take any path on the surface of a cone. When the rays emerge from the crystal,
they form a cylinder. This is called internal conical refraction. External conical refraction is similar, but
the source of the light is within the crystal and light is refracted into a hollow cone of rays when it emerges
from the crystal.

Figure 4: Internal Conical Refraction.

It is amazing that Hamilton was able to predict this phenomenon mathematically. His general approach
to optics was formulate a characteristic equation (V ) for the system being investigated. This equation was
required to satisfy the following: light traveling from an object at (x

′
, y

′
, z

′
) to an eye at (x, y, z) follows a

path determined by the direction cosines α, β, γ and α
′
, β

′
, γ

′
which can be determined by

α =
∂V

∂x
, β =

∂V

∂y
γ =

∂V

∂z

α
′

=
∂V

∂x′ , β
′

=
∂V

∂y′ γ
′

=
∂V

∂z′
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This technique proved to be very successful, so much so that Hamilton claimed mathematical optics could
be divided “into two principle parts: one part proposing to find in every particular case the form of the
characteristic function V , and the other part proposing to use it”(Hamilton, On Some Results of the View of
a Characteristic Function in Optics). Hamilton also often used a quantity called the “slowness”. Technically,
slowness is the gradient of the action function, but for the following analysis it is only important to know
that the slowness vector is perpendicular to all spatial vectors which are tangent to the wave surface (that
is, it points in the direction of propagation of the wave) and that its length increases as the light’s velocity
decreases. Hamilton observed that ∂V

∂x represents the slowness of light in the x direction. Furthermore, when
the normal to the refracting surface is taken to be the z-axis, then

∆
∂V

∂x
= 0 and ∆

∂V

∂y
= 0 (4)

This implies that the component of normal slowness is not altered by refraction in a direction parallel to
the surface. This can easily be demonstrated for ordinary refraction (in a material with a single index of
refraction). In Figure 5, light is incident on an object at angle θ1. It then refracts at angle θ2. Equation
(4) says that the velocity of the ray in the x and y directions does not change upon refraction. To simplify
things, consider incident light with no y-component of velocity. By letting L1 and L2 be lengths of the
incident and refracted rays and making them proportional to n1 and n2 respectively, it follows that

L1x

time
=

L2x

time
= Vx ⇒ L1x = L2x,

where L1x and L2x are the x-components of L1 and L2, given by

L1x = L1 sin θ1 and L2x = L2 sin θ2

This means that L1 sin θ1 = L2 sin θ2, or equivalently n1 sin θ1 = n2 sin θ2, which is simply Snell’s Law.

Figure 5: n1 and n2 represent the indices of refraction of the two objects.

In applying this method to extraordinary refraction (as is present in biaxal crystals), construction of the
slowness requirement involves, instead of L2 above, a variable length due to the multiple refractive indices.
Hamilton had noticed that when he constructed the locus of points in all directions of the slowness for
ordinary refraction a sphere was produced, but for extraordinary refraction, the variable length resulted
in a double surface (called a surface of components of normal slowness). Armed with this realization and
the principles Fresnel had already determined for biaxal crystals, Hamilton proceeded to apply his general
method to those crystals. The surface of components which resulted had what Hamilton called “cusps” with
the properties previously given to the optic axes. He immediately concluded that if a ray of light was incident
on the crystal at a cusp it would produce “no unique refracted ray,. . . but an infinite number of refracted
rays, namely, all the perpendiculars which can be let fall from the point of incidence on the tangent cone
at the cusp”(On Some Results of the View of a Characteristic Function in Optics). This prediction offered
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a test for Fresnel’s principles because it seemed to contradict previous observations. Given the importance
of this discovery, it is not surprising that Hamilton returned to the biaxal crystal after his development of
quaternions.

Quaternions

Hamilton hoped to extend the view of complex numbers as points on a plane to three dimensional space.
In Theory of Conjugate Functions, or Algebraic Couples (which was written in 1833 but published as part
of an 1837 essay), Hamilton demonstrated that “couples”, that is, coordinates (a, b) of a point on a plane
are equivalent to complex numbers when written in the form a+ bi. At the end of this essay he declared his
intent to develop a similar system for three dimensions which he termed a “Theory of Triplets”(Hamilton,
422). One source of motivation for this search was that points in space or “triples” could only be added
and subtracted at the time, so an active area of study involved discovering the laws of multiplication. The
solution occurred to Hamilton during his now famous walk along the Royal Canal in Ireland and he was so
excited by it that he carved it into the Brougham Bridge. In essence, he realized that he already knew how
to multiply quadruples, so he just needed a forth coordinate, as defined by his 1843 carving:

i2 = j2 = k2 = ijk = −1

Quaternions became the first significant number system which did not obey the laws of ordinary arithmetic,
and they were widely used. Their application to three dimensional rotations proved extremely useful in
physics, since vectors had not yet been developed. They could do things that were otherwise impossible at
the time and, as such, it is not surprising that Hamilton saw quaternions as the future.

As a set, the quaternions are a four dimensional vector space over the real numbers. As such, every element
of the set of quaternions can be written as a linear combination of the base elements of R4, which are usually
denoted (1, i, j, k). Therefore, each quaternion is a hypercomplex number having the form a1 + bi+ cj + dk,
where a, b, c, and d are real numbers and i, j, and k are unit vectors along the x, y, and z axes. The laws for
i, j, andk can be easily derived from the above formula:

i2 = j2 = k2 = ijk = −1 ⇒ −1 = ijk ⇒ −k = ijkk ⇒ −k = ij(−1) ⇒ k = ij

The other laws can be arrived at in the same way. They are

jk = i ki = j ji = −k kj = −i ik = −j

Using these laws, the Hamilton product can be defined,

(a1 + b1i+ c1j+d1k)(a2 + b2i+ c2j+d2k) = a1a2 +a1b2i+a1c2j+a1d2k+ b1a2i+ b1b2i
2 + b1c2ij+ b1d2ik+

c1a2j + c1b2ji+ c1c2j
2 + c1d2jk+ d1a2k+ d1b2ki+ d1c2kj + d1d2k

2

= a1a2+a1b2i+a1c2j+a1d2k+b1a2i−b1b2+b1c2k+b1c2j+c1a2j−c1b2k−c1c2+c1d2i+d1a2k+d1b2j−d1c2i−d1d2

= (a1a2−b1b2−c1c2−d1d2)+(a1b2+b1a2+c1d2−d1c2)i+(a1c2+b1c2+c1a2+d1b2)j+(a1d2+b1c2−c1b2+d1a2)k

Despite what the complex equation above may suggest, quaternions are very easy to work with and the
calculation of the product given above is rarely necessary. One useful simplification comes the quaternions
being multiplied are conjugates. The quaternion conjugate is analogous to the complex conjugate in that the
conjugate of q = a+ bi+ cj+ dk is q∗ = a− bi− cj− dk. It can be seen from the definition of multiplication
that

qq∗ = q∗q = a2 + b2 + c2 + d2

is always a real, non-negative number. In this system, a quaternion is defined as the sum of a scalar and a
vector so that every quaternion can be separated into its scalar and vector parts using the notation

Sq = a, Vq = bi+ cj + dk, and q = Sq + Vq

Therefore, a vector is a quaternion with no scalar part and a scalar is a quaternion with no vector part. The
scalar part of the product of two vectors Sαβ is defined as the product of the length of α and the projection
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of β onto α. This is equivalent to the dot product in vector analysis. Similarly, Vαβ is the cross product
α× β. Thus, the scalar part of a vector product has commutative and distributive properties:

Sαβ = Sβα and Sα(β + γ) = Sαβ + Sαγ

The vector part of these products does not have these properties, but Vαβ = −Vβα. The product of two
vectors is given by αβ = Sαβ + Vαβ from which follows βα = Sαβ − Vαβ. There are also useful vector
functions. A linear vector function φ is a function that satisfies

φ(α+ β) = φα+ φβ, Sφα = 0, and Sφβ = 0

for all vectors α and β. The usefulness of such functions will be seen shortly. There are many other useful
concepts in quaternion mathematics. The formulas included here are restricted to those pertinent to this
discussion. For a more complete list see Charles Joly’s, Manual of Quaternions , from which most of the
following were obtained, or Hamilton’s, Seventh Lecture on Quaternions.

• Some useful functions in quaternion mathematics:

– The Tensor of a vector α is its magnitude and is denoted Tα

– The vector reciprocal α−1 has the opposite direction as α and the reciprocal magnitude, that is,

Sα−1 = Tα−1 =
1

Tα
(5)

– Relations concerning α2:

Vαα = 0, Sαα = −(Tα)2, and αα = Sαα+ Vαα = −(Tα)2 (6)

– If α is perpendicular to β, then
Sαβ = 0. (7)

Also, if Vαβ = γ, γ is perpendicular to both α and β. Perpendicular vectors are sometimes
referred to as rectangular.

– For an arbitrary vector ρ, the linear vector function φ can be chosen such that

Sρφρ = constant (8)

represents the equation of any central surface of second order (i.e. any quadric surface).

– For a constant scalar x, φ(xα) = xφα.

– If σ = φρ, then a transformation can be made from the vector ρ to σ which follows the rules

Vαβ becomes Vφαφβ and Sαβ becomes Sφαφβ

so that, as an example, the equation of a plane S(ρ− α)β = 0 becomes S(σ − φα)φβ = 0.

As mentioned, once Hamilton had discovered quaternions they became the central focus of the remainder
of his life. As such, he often would revisit his previous work with the hope of improving it with his new
discovery.

Quaternion Equations for Fresnel’s Wave Surface

The power of Hamilton’s quaternion system reveals itself in the drastic simplifications it makes to nota-
tion. An example of this immediately presents itself in Hamilton’s paper, On Some Quaternion Equations
Connected with Fresnel’s Wave Surface for Biaxal Crystals, which begins with the simple quaternion equation
for an ellipsoid,

Sρφρ = 1. (9)
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Since quaternion equations have become somewhat obscure, it may not be obvious that (9) is the equation
of an ellipsoid. To demonstrate this, the following steps transform (9) into Cartesian form. The locus of
points created by rotating the vector ρ = xx̂ + yŷ + zẑ in all possible directions forms a shell. Define the
vector function φ by

φ = α−1Sα−1 + β−1Sβ−1 + γ−1Sγ−1,

where α, β and γ are rectangular vectors with lengths a, b and c respectively. Recall that rectangular
vectors are perpendicular so they can be assumed to lie on the x, y and z axis respectively. In addition, if
the length of α is a, then the length of α−1 is 1/a by equation (5). Similar relations hold for β and γ, so
that

α−1 =
1
a
x̂, β−1 =

1
b
ŷ, and γ−1 =

1
c
ẑ.

This gives
φρ = φ = α−1Sα−1ρ+ β−1Sβ−1ρ+ γ−1Sγ−1ρ.

Considering only the α−1 case,

Sα−1ρ = α−1 · ρ =
x

a
⇒ α−1Sα−1ρ =

x

a2
x̂

The other terms are similar so that
φρ =

( x

a2
x̂+

y

b2
ŷ +

z

c2
ẑ
)

Then equation (12) gives

Sρφρ = ρ · φρ = (xx̂+ yŷ + zẑ) ·
( x

a2
x̂+

y

b2
ŷ +

z

c2
ẑ
)

=
x2

a2
+
y2

b2
+
z2

c2
= 1

which is the equation of an ellipsoid, as claimed.
The goal of Hamilton’s above mentioned paper was to derive the equation for the wave surface of a biaxal

crystal (equation(1)) with quaternions. His first step was to seek out the direction of wave propagation.
In most materials, light propagates in a direction perpendicular to the wave front, but this is not the case
within biaxal crystals due to their multiple refractive indices. To find the direction of propagation, Hamilton
used the displacement of the crystal molecules thought to be caused by the wave. He also used the slowness
of the wave’s propagation, which is perpendicular to the wave front (Figure 6). Furthermore, since a crystal
can be considered an elastic medium, the displacement meets with a restoring force, given by some elastic
constant times the displacement (Hooke’s law). However, this restoring force is not necessarily in the opposite
direction as the displacement. This may seem to violate Newton’s third law (“If two bodies exert forces on
each other, these forces are equal in magnitude and opposite in direction”; Thornton and Marion, 49), but
this law only applies to central forces (forces between objects which act on a line connecting the objects).
Velocity dependent forces (such as the one considered here which must propagate at the velocity of light)
do not obey the third law. In a biaxal crystal, the elastic constant is different depending on the direction of
displacement and is indicative of of the direction of propagation. By denoting the part of the displacement
which is parallel to the wave surface δρ, the elastic force has the form φ−1δρ. To see this, let φ be as defined
above and δρ = δxx̂+ δyŷ + δzẑ. Then,

φ−1φδρ = δρ and φδρ =
(
δx

a2
x̂+

δy

b2
ŷ +

δz

c2
ẑ

)
⇒ φ−1 = αSα+ βSβ + γSγ ⇒ φ−1δρ = a2δxx̂+ b2δyŷ + c2δzẑ = kδρ,

if k is considered to be the elastic constant which varies in each direction. Hamilton did not use vector
notation, but to avoid confusion from this point on vectors will be specified with the (~) symbol. From
Figure 6 it can be seen that the tangential (to the wave surface) component of the elastic force has the
direction of ~δρ an the normal component is in the ~µ−1 direction. Furthermore, if ~δρ is considered a unit
vector, the tangential component can be written µ−2 ~δρ (note that µ−2 is a scalar by (6)). Given this,
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Figure 6: WF represents a wave front moving in the ~µ−1 direction.

and the fact that the vector representing the elastic force is equal to the sum of its normal and tangential
components, it can be concluded that the normal part (~Fnormal) is

~Fnormal = ~Felastic − ~Ftangential = φ−1 ~δρ− µ−2 ~δρ = (φ−1 − µ−2) ~δρ.

But as previously observed this vector is in the direction of ~µ−1, so it can also be denoted δm~µ−1 where δm
is a scalar. Equating the two equations for the normal component of the elastic force and solving for ~δρ gives

δm~µ−1 = (φ−1 − µ−2) ~δρ ⇒ ~δρ = (φ−1 − µ−2)δm~µ−1.

Now by recalling that ~µ−1 is perpendicular to ~δρ and employing the quaternion property given in (7),
S~µ−1 ~δρ = 0, but V~µ−1 ~δρ = 0 has the direction of wave propagation which has been sought. So, eliminating
δm by writing

~τδm = ~µ−1 ~δρ ⇒ ~τ = ~µ−1(φ−1 − µ−2)~µ−1,

gives a quaternion ~τ , with no scalar part (hence the vector symbol) in the direction of true displacement
within the crystal. The fact that the scalar part of ~τ is zero gives rise to

S~µ−1(φ−1 − µ−2)~µ−1 = 0 (10)

which can easily be identified as a quadric surface (8) since

S~µ−1(φ−1 − µ−2)~µ−1 = S~µ−1φ−1~µ−1 − S~µ−1µ−2~µ−1 = 0

⇒ S~µ−1φ−1~µ−1 = [(T~µ−1)2]2 ⇒ S~µ−1φ−1~µ−1 = constant.

Hamilton identified (10) as the equation of an index surface, since the direction of true displacement is
related to the refractive index. Next, letting the vector perpendicular to the wave surface be ~ρ, Hamilton
used physical principles to relate ~µ−1 to ~ρ−1, and the methods of quaternion transformations to transform
(10) into a function of ~ρ and conclude that the result was the quaternion equation for the wave surface. This
equation is

S~ρ−1(φ− ρ−2)~ρ−1 = 0 (11)

By comparing (11) to (1), the advantages in quaternion notation are evident. Also, the ease with which
Hamilton was able to arrive at his equation shows the strength of quaternions. In the preceding description,
the explanation of the physical properties made up most of the work. Once these properties had been
described by quaternion equations, Hamilton essentially only needed three steps. First, he turned the
expressions for quantities known to be perpendicular to the wave into a quaternion equation which could be
solved to give the direction of displacement within the crystal. Next, he used this equation to write (10),
the equation of a surface representing the refractive index. Finally, he transformed (10) into the Fresnel’s
wave surface in quaternion form.
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It may be that by revisiting previous mathematical findings after his discovery of quaternions convinced
Hamilton that those discoveries would have been made sooner or more easily had quaternions always been
used. It is also likely that the simplicity and utility of quaternion mathematics made it impossible for Hamil-
ton to suspect that they were just one of a number of equally effective systems rather than a fundamental
method for describing nature. Quaternions allowed Hamilton to solve problems which he could not solve by
any other method at the time, so his devotion to them hardly seems unjustified. Even though the importance
of quaternions can be debated, the significance of Hamilton’s contribution’s to mathematical optics and to
science in general have guaranteed that the fame he had in life will continue well into the foreseeable future.
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