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Part I:   INTRODUCTION 

 Combinatorics is the branch of mathematics studying the enumeration, 

combination, and permutation of sets of elements and the mathematical relations that 

characterize their properties.  A major theorem in that field is Lucas’s Theorem, which is 

often stated in the following way: 

If p is a prime, m = m1m2m3...mk  in base p, and n = n1n2n3…nk in base p, then  
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This paper will discuss Lucas’s Theorem and some applications, as well as mathematical 

developments leading to Lucas’s Theorem and the mathematical environment of Lucas’s 

time. 

Part II:  LUCAS’S LIFE AND TIMES 

 François-Édouard-Anatole Lucas, always known as Édouard, was born the son of 

a laborer in Amiens, France in 1842 (Williams, p. 53).  He grew up in very unsettled 

times.  When Édouard was six years old, revolutions swept the world.  Just before the 

1848 revolution in France took place, Karl Marx and Friedrich Engels published their 

Communist Manifesto (Garraty, pp. 885-889).  France participated in the Crimean War 

from 1854 to 1856, and China was engaged from 1851 to 1864 in the Taiping Rebellion, 

possibly the bloodiest civil war in history.  Another kind of revolution started with 

Charles Darwin’s publication of The Origin of Species in 1859 (Garraty, p. 31).    

 Because of his mathematical talents, starting in 1861 Édouard was educated at the 

École polytechnique and École normale, which were at that time the most prestigious 

institutions of higher learning in France, and graduated from the latter in 1864 (Williams, 

p. 53).  He was first employed at the Paris Observatory as an assistant (Gridgeman).  The 



ongoing turmoil in Europe affected him directly.  He became an artillery officer during 

the short-lived Franco-Prussian War (Gridgeman), which ended in defeat and a new 

government for the French in 1871 (Garraty, p. 914). 

 In 1872 Lucas became professor of mathematics at the Lycée of Moulins, and 

after that he taught at the Lycées of Paris Saint-Louis and Paris Charlemagne (Williams, 

p. 53).  He was known for his boundless energy and broad range of interests (Williams, p. 

53).  Lucas’s career was cut short by an accident in 1891, when a piece of a dropped plate 

flew up and gashed his cheek while he was attending a meeting of the French Association 

for the Advancement of Science in Marseilles (Williams, pp. 148-149).  The wound 

became infected, and within a few days Lucas was dead of erysipelas (Gridgeman). 

 As the world changed socially during Lucas’s lifetime, so did it change 

mathematically.  The multifaceted activity was doubtlessly inspired by the genius of Carl 

Friedrich Gauss (1777-1855), the man often called the founder of modern mathematics 

(Dunnington).  Ernst Eduard Kummer (1810-1893) developed the concept of algebraic 

integers and ideal numbers.  His work extended the fundamental theorem of arithmetic, 

which states that every integer can be factored into a product of primes, to include 

complex number fields (“Kummer”).  The field of logic developed during the Nineteenth 

Century, with Augustus De Morgan’s (1806-1871) solution of the negation problem and 

George Boole’s (1815-1864) creation of operator algebra and a system for logical 

expression (Suzuki, pp 700-701).     

 Euclidean geometry was turned on its head during Lucas’s career, as many 

mathematicians studied and expanded the contributions of János Bolyai (l802-1860) and 

Nikolai Lobachevsky (1793-1856) in the first half of the Nineteenth Century.  These two 



men independently conceived of a geometric system in which Euclid’s fifth postulate was 

replaced with the characteristic axiom of hyperbolic geometry (Chern).  Lobachevsky 

published the first account of a non-Euclidean geometry in 1829 (Suzuki, p. 652).  

Eugenio Beltrami (1835-1900) investigated the mapping of abstract surfaces and 

developed theories about surfaces with constant curvature.  Bernhard Riemann (1826-

1866) unified the theories of complex and harmonic functions.  His concept of the 

Riemann surface is an important part of fundamental complex function theory (Suzuki, p. 

660).  These mathematicians greatly expanded the bounds of mathematical thinking and 

investigation and initiated the development of topological theory, which has been a major 

area of mathematical research ever since.  By the end of the Nineteenth Century 

projective geometry had been developed by Felix Klein (1849-1924) and others (Chern). 

  Arthur Cayley (1821-1895) played an important role in developing modern linear 

and abstract algebra (Suzuki, p. 707).  Throughout the second half of the Nineteenth 

Century there was a movement to arithmetize mathematics, encouraging the modern 

emphasis on algebraic rather than geometric reasoning (Boyer).  Georg Cantor (1845-

1918) proved several important foundations of set theory, including the fact that the 

rational numbers are countable, but the real numbers are uncountable (Suzuki, p. 681).  

He revolutionized the concept of infinity by showing that because the set of real numbers 

is not countable its cardinality is a “larger” infinity than that of the set of counting 

numbers (“Mathematics”).  Richard Dedekind (1831-1916) advanced number theory and 

set theory to include irrational numbers, proving that the domain of the real numbers is 

continuous (“Mathematics”).  In his book The Foundations of Arithmetic Gottlob Frege 



(1848-1925) was the first to publish a theory of the natural numbers (Suzuki, pp. 677-

678).   

 Lucas contributed to the flurry of mathematical development during the second 

half of the Nineteenth Century.  He wrote papers about many subjects, including 

astronomy, weaving, analysis, combinatorics, calculating devices, geometry, and 

recreational mathematics (Williams, p. 53).  He invented the still-popular game known as 

the Tower of Hanoi, in which n distinctive rings piled on one of three pegs on a board 

must be transferred, in single peg-to-peg steps, to one of the other pegs, with the final 

ordering of the rings remaining unchanged (Gridgeman).  A version of one of Lucas’ 

chessboard puzzles was adapted for the computer nearly a century after his death 

(Riamus).  Lucas also published several volumes of mathematical recreations, which 

included a variety of chessboard and geometry problems, among many others (Ball, pp. 

124-125).  Certainly these games help to explain his known popularity as a teacher 

(Gridgeman).   

 Lucas’s most famous research centered on number theory, particularly the testing 

for prime numbers.  His most significant discovery was that it could be done without a 

large number of calculations (Williams, p.57).  Lucas proposed any number of theorems 

concerning primality; among them was one discussing the Fermat numbers, which take 

the form Fn = 
n22  + 1. 

  Let Fn = 2r + 1 (r = 2n) and T1 = 3.  If we define the sequence {Ti} 
 by Ti+1 = 2Ti

2 – 1 (i = 1,2,3,…), then Fn is a prime if the first term of this  
 sequence which is divisible by Fn is Tr-1.  Also, Fn is composite if none of  
 these terms up to and including Tr-1 is divisible by Fn.  Finally, if k [< r]  
 denotes the rank of the first term which is divisible by Fn, the prime divisors 
 of Fn must have the form 2k+1q + 1. (Williams, p. 99)  
 



 Lucas devised a theorem which provided the basis of the modern method of 

testing the primality of Mersenne numbers, which take the form 2n – 1 (Gridgeman).  His 

version states: 

  Let Mn = 2n – 1, where n ≡  1 (mod 4).  Form the sequence r1 = 4, 
 r2 = 14, r3 = 194, r4 = 37634,…, where ri+1 = 2

ir – 2.  The number Mn is 

 composite if Mn [does not divide] rk for k = 1,2,3,…, n – 1; Mn is prime if the 
 least value α of k such that Mn | rk is such that (n + 1)/2 ≤ α ≤ n.  If α < (n – 1)/2, 
 then the prime divisors of Mn must have the form 2αm ±  1.  [Lucas wrote  
 2αm + 1, but this is clearly incorrect.] (Williams, p. 98)  
  
Derrick Lehmer (1905-1991) expanded the theorem in 1930 to include all odd values of 

n.  His work yielded the technique known as the Lucas-Lehmer test (Williams, p. 112), 

which is still commonly used today (Havil, p. 164).  In 1876 Lucas used his own theorem 

to identify 2127 – 1 as a prime.  This was the first new Mersenne prime discovered in over 

a century, and was also the largest ever to be discovered without electronic help 

(Gridgeman). 

 
PART III:  MATHEMATICAL DEVELOPMENTS LEADING TO LUCAS’S 
THEOREM   
 
 Mathematical developments painting the background for Lucas’s Theorem 

represent several separate fields:  prime number theory, and the three areas that converge 

in Pascal’s Triangle:  figurative, or sequential, number theory; algebra; and 

combinatorics.  Interestingly, the Chinese know Pascal’s Triangle as Yang Hui’s 

Triangle; the Iranians call it the Khayyam Triangle; and the Italians call it Tartaglia’s 

Triangle (Pascal’s Triangle Builder).  The varied nomenclature demonstrates the 

disparate trails that led to Pascal’s accomplishment of unifying various results into one 

figure. 



 Greeks of Pythagoras’ time as well as Egyptians as early as 300 B.C. were very 

interested in number patterns (Edwards, pp. 1-5).  Leonardo of Pisa (1170-1250), also 

known as Fibonacci (Williams, p. 31), published the sequence of numbers named after 

him in 1202, to solve the question of how many descendants a pair of rabbits can produce 

in various periods of time (Phillips, p. 139).   

 Euclid expanded (a + b)2 about 300 B.C. and Brahmagupta expanded (a + b)3 

about 628 A.D.  Al-Karaji discovered the binomial triangle around 1000 A.D.  A century 

later Omar Khayyam claimed to have raised binomials to the sixth power and higher.  

Yang Hui showed the coefficients of (a + b)n up to the sixth power about 1261 A.D., and 

Al-Kashi gave the general rule for positive integers about 1427 A.D. (Edwards, pp. 51-

52)  About 1544 the German mathematician Michael Stifel (1487-1567) utilized the 

figurate triangle to extract roots.  He is considered the first in the western world to 

discover the identity of the binomial and figurate numbers according to the equation 
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 Combinatorics also has a long history, though Gottfried Leibniz (1646-1716) was 

the first to use the term in the modern sense.  Well in the pre-Christian era the Indian 

mathematician Susruta systematically enumerated possibilities to arrive at the total 

number of potential outcomes (Edwards, p. 27).  Around 310 A.D., when studying 

intersecting lines, Pappus derived a general rule for choosing 2 items from n different 

things, specifically that 
2

)1(1
2

−
=− nn

f n  (Edwards, p. 27). In about 1140, Rabbi Ben Ezra 



(1092-1167), the inspiration for Robert Browning’s famous poem bearing his name 

(Bradley, pp. 510-515), who was responsible for bringing much Eastern knowledge to 

Europe (O’Connor, 1999), used the Hindu method for finding the number of 

combinations of seven objects, in this case the then-known six planets and the sun, taken 

r at a time, which yielded the combinatorial numbers 7C2, 
7C3,…,7C7, or 21, 35, 35, 21, 7, 

and 1, for a total of 120.   

 Gambling was the impetus for much combinatorial study in the Middle Ages.  

During the Renaissance, Niccolo Tartaglia (1500-1557) created a general rule for 

determining the number of unordered throws of n dice.  He also devised a general 

formula for solving cubic polynomials.  It appears that both Tartaglia and his rival 

Girolamo Cardano (1501-1576), who published a combinatorial triangle which he related 

to the figurate triangle, understood that these two sets of numbers were connected to the 

binomial expansion (Edwards, pp. 34-43).  In 1636 Marin Mersenne (1588-1648) 

published a collection of the rules of combinatorics.  A young student named Blaise 

Pascal (1623-1662) knew Mersenne, and followed Mersenne’s format when constructing 

his famous triangle (Edwards, p. 47).    

 Prime numbers have been studied since the earliest days of mathematics.  

Pythagoras understood the concept of primality (Valens, p. 18).  Primes are a part of the 

fundamental theorem of arithmetic, which was deduced if not explicitly stated by Euclid 

(Suzuki, p. 126).  Around 300 B.C. this great mathematician proved that the number of 

primes is infinite, and in so doing created the abstract theory of prime numbers (Crandall, 

p. 5).  The Sieve of Eratosthenes, devised about 200 B.C., was an algorithm to calculate 



primes.  After this time there was a long period of apparent inactivity in research about 

primality.    

 In the Seventeenth Century Mersenne asserted that the number 2n – 1 is prime for 

n = 2, 3, 5, 7, 13, 17, 19, 31, 67, 127, 257 and for no other values of n ≤  257 (Phillips, p. 

169).  His work was the basis for much of Lucas’s research, as was that of Pierre de 

Fermat (1601-1665), who claimed wrongly in 1637 that Fermat’s numbers, as they 

became known, are always prime (Crandall, p. 24).  Despite this often-cited error in a 

distinguished career, Fermat spurred interest in primality, and in his own work combined 

the concepts of prime number and probability theory (O’Connor, 2005), leading the way 

to combinatorics. 

 Gauss explicated the concept of congruence with regard to residue classes.  In his 

terminology, the expression x ≡  u (mod n) indicates that x is congruent to u in terms of 

residue (Phillips, p.172).  Shown below in Gaussian form, Fermat’s Little Theorem, 

which is an important precursor to Lucas’s Theorem, is clearer to the modern reader than 

it would be in the original version.  Fermat’s Little Theorem states that for any prime p 

and any positive integer a that is not divisible by p, ap-1 ≡  1 (mod p) (Phillips, p. 174).  

Joseph-Louis LaGrange (1736-1813) applied this theorem to polynomials, obtaining the 

result that, “given any prime p and a polynomial f(x) = a0x
n + a1x

n-1 + … + an-1x + an, 

where p does not divide a0, then f(x) is satisfied by at most n distinct residues modulo p” 

(Phillips, p. 179).  Leonhard Euler (1707-1783) generalized Fermat’s Little Theorem 

from just primes to all positive integers (Phillips, p. 177).  Using these earlier results, 

themselves the outcomes of generations of mathematical study, Lucas was able to apply 

the patterns elucidated in Pascal’s Triangle to create his theorem. 



 
PART IV:  LUCAS’S THEOREM, PROOFS, AND EXAMPLE OF USE 
 
 Lucas proposed his great theorem in 1878, in Section XXI of the massive journal 

article Théorie des functions numériques simplement périodiques (Lucas), without 

presenting an actual proof.  A copy of the original version of this Section is in the 

Appendix.  The following mathematical statements, through the theorem itself, are 

expressed using Lucas’s notation, which, relative to today’s notation, reversed the terms 

next to the C.  He approached the statement of the theorem by first noting two 

fundamental formulas for determining the number of combinations of m objects taken 

from n objects one at a time: 
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the same for ν1,ν2,ν3,… with respect to n (Lucas). 
 
 One modern way of expressing Lucas’s Theorem is to let p be prime and suppose  



  r = rkp
k + … + r1p + r0   (0 ≤ ri < p);  

  c = ckp
k + … +c1p + c0    (0 ≤ ci < p)   (Evans). “Then 
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 The theorem can be used to calculate a number such as 
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 mod 3, as follows: 

 

  10510 = 102203, and 2410 = 2203; pairing the digits of these base 3 numbers 

yields 
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 The several proofs offered for Lucas’s Theorem are primarily of two types, 

algebraic and combinatorial.  The following algebraic proof is based on the Binomial 

Theorem for expansion of (1 + x)r.  Let   
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 at most one such set of coefficients, given by sm = cm if every cm ≤ rm (since 
 there is a unique representation for the p-ary form of c.)  If cm > rm for some m, 



 then the inner sum is zero.  In either case, the theorem follows by equating 
 coefficients of xc for each 0 ≤ c ≤ r. (Riddle) 
 
Anderson et al. have presented a longer, combinatorial proof of Lucas’s Theorem 

(Anderson). 

 Lucas’s Theorem can be used to solve very difficult problems in combinatorics  

and probability.  For example, in a computer security algorithm, each employee’s 

identification number can be made to be congruent mod 23, and is constructed using 

choose notation, i.e., 
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.  To access a file, the employee would enter the number 

10000050.  Clearly, the larger the modulus the more secure the system.  All assigned 

identification numbers are congruent to 11 mod 23.  If someone types in the identification 

number 22340197, it is critically important for the computer to tell if 
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congruent to 11 mod 23.  The number 
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error in almost any computer system.  With Lucas’s Theorem the calculation becomes 

manageable:  in base 23, 2234 is 453, and 197 is 8(13) (13 is a single digit in base 23), 
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 = 1 × 0 × 0 = 0 mod 23.  This is not congruent to 

11 mod 23, so the person trying to login is either a hacker or a poor typist. 

 
 
PART V:  EXTENSIONS AND GENERALIZATIONS OF LUCAS’S THEOREM 

 Even today, Lucas’s Theorem is being studied widely, and has been both 

extended and generalized, particularly in the area of binomial coefficients.  Richard 

Bollinger and Charles Burchard applied the theorem to Pascal’s Triangle, proving given 
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si ≤ (m −1)ni; if k is not representable in this form then certainly Cm(n,k) ≡  0 (mod p)” 

(Bollinger).   

 In the same area of research, Alexis Bès generalized Lucas’s Theorem to mod 

prime powers. This accomplishment obviously serves to improve the security of 

cryptographic applications (Bès).  

 Jacques Boulanger and Jean-Luc Chabert have recently extended Lucas’ Theorem 

to linear algebra and even topology. 

 Let V be a discrete valuation domain with finite residue field.  Denote 
  by K the quotient field of V, by v the corresponding valuation of K, by m 
  the maximal ideal of V, and by q the cardinality of the residue field V/m. 

  We denote by ,ˆ,ˆ VK  and m̂ the completions of K, V, and m with respect  

 to the m-adic topology and we still denote by v the extension of v to K̂ ….  
 The polynomials Cn(X) form a basis of the V-module Int(V)….   
 If n = n0 + n1q + … + nkq

k is the q-adic expansion of a positive integer n,   
 and if x = x0 + x1t + … + xjt

j + … is the t-adic expansion of an element x  

 of V̂ , then Cn(x) ≡  )ˆ(mod)()...()( 10 10
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In a related field, Neyamat Zaheer generalized Lucas’s Theorem to vector-valued abstract 

polynomials in vector spaces (Zaheer). 

 To formulate a divisibility theorem, Tyler Evans applied Lucas’s Theorem to 

Euler’s ϕ  function.  “For n ≥ 1, m = Mn + m0, r = Rn + r0, 0 ≤ m0, r0 < n    
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 The breadth and longevity of research applying Lucas’s Theorem to new areas of 

mathematics demonstrate the significance of this theorem.  Last summer the author, 

under the direction of Professor Daniel Pritikin, extended Lucas’s Theorem to determine 

how many entries in a given row of Pascal’s Triangle are equivalent to a given number 

modulo 3 or 5.  In the simpler case, mod 3, the number of entries with remainder 1 in row 

n was calculated to be  

  f1(n) = 2/]13[2 )()( 21 +• ncnc ,  

and the number of entries with remainder 2 in row n was calculated to be 

  f2(n) = 2/]13[2 )()( 21 −• ncnc ,  

where c1(n) is the number of 1’s in the base 3 expansion of n and c2(n) is the number of 

2’s in the base 3 expansion of n (Smith). 

 Clearly, in the author’s opinion, Lucas’s Theorem is great.  It amalgamates 

centuries of mathematical work, it is a useful tool on its own, and it also has been a 

building block of significant developments in diverse areas of mathematics in the decades 

since its exposition. 
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