LUCAS’S THEOREM: A GREAT THEOREM

Douglas Smith

Department of Mathematics and Statistics
Miami University
Oxford, OH 45056

smithdrl @muohio.edu

Supervising Instructor: Professor David Kullman



Part I INTRODUCTION

Combinatorics is the branch of mathematics studying the enumeration,
combination, and permutation of sets of elements and the mathematical relations that
characterize their properties. A major theorem in that field is Lucas’s Theorem, which is
often stated in the following way:

If p is a prime, m = m;myms...my, in base p, and n = n;nyn;...n; in base p, then

m m, m, n, m, )
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This paper will discuss Lucas’s Theorem and some applications, as well as mathematical
developments leading to Lucas’s Theorem and the mathematical environment of Lucas’s
time.
Part II: LUCAS’S LIFE AND TIMES

Frangois—Edouard—Anatole Lucas, always known as Edouard, was born the son of
a laborer in Amiens, France in 1842 (Williams, p. 53). He grew up in very unsettled
times. When Edouard was six years old, revolutions swept the world. Just before the
1848 revolution in France took place, Karl Marx and Friedrich Engels published their
Communist Manifesto (Garraty, pp. 885-889). France participated in the Crimean War
from 1854 to 1856, and China was engaged from 1851 to 1864 in the Taiping Rebellion,
possibly the bloodiest civil war in history. Another kind of revolution started with
Charles Darwin’s publication of The Origin of Species in 1859 (Garraty, p. 31).

Because of his mathematical talents, starting in 1861 Edouard was educated at the
Ecole polytechnique and Ecole normale, which were at that time the most prestigious
institutions of higher learning in France, and graduated from the latter in 1864 (Williams,

p. 53). He was first employed at the Paris Observatory as an assistant (Gridgeman). The



ongoing turmoil in Europe affected him directly. He became an artillery officer during
the short-lived Franco-Prussian War (Gridgeman), which ended in defeat and a new
government for the French in 1871 (Garraty, p. 914).

In 1872 Lucas became professor of mathematics at the Lycée of Moulins, and
after that he taught at the Lycées of Paris Saint-Louis and Paris Charlemagne (Williams,
p- 53). He was known for his boundless energy and broad range of interests (Williams, p.
53). Lucas’s career was cut short by an accident in 1891, when a piece of a dropped plate
flew up and gashed his cheek while he was attending a meeting of the French Association
for the Advancement of Science in Marseilles (Williams, pp. 148-149). The wound
became infected, and within a few days Lucas was dead of erysipelas (Gridgeman).

As the world changed socially during Lucas’s lifetime, so did it change
mathematically. The multifaceted activity was doubtlessly inspired by the genius of Carl
Friedrich Gauss (1777-1855), the man often called the founder of modern mathematics
(Dunnington). Ernst Eduard Kummer (1810-1893) developed the concept of algebraic
integers and ideal numbers. His work extended the fundamental theorem of arithmetic,
which states that every integer can be factored into a product of primes, to include
complex number fields (“Kummer”). The field of logic developed during the Nineteenth
Century, with Augustus De Morgan’s (1806-1871) solution of the negation problem and
George Boole’s (1815-1864) creation of operator algebra and a system for logical
expression (Suzuki, pp 700-701).

Euclidean geometry was turned on its head during Lucas’s career, as many
mathematicians studied and expanded the contributions of Janos Bolyai (1802-1860) and

Nikolai Lobachevsky (1793-1856) in the first half of the Nineteenth Century. These two



men independently conceived of a geometric system in which Euclid’s fifth postulate was
replaced with the characteristic axiom of hyperbolic geometry (Chern). Lobachevsky
published the first account of a non-Euclidean geometry in 1829 (Suzuki, p. 652).
Eugenio Beltrami (1835-1900) investigated the mapping of abstract surfaces and
developed theories about surfaces with constant curvature. Bernhard Riemann (1826-
1866) unified the theories of complex and harmonic functions. His concept of the
Riemann surface is an important part of fundamental complex function theory (Suzuki, p.
660). These mathematicians greatly expanded the bounds of mathematical thinking and
investigation and initiated the development of topological theory, which has been a major
area of mathematical research ever since. By the end of the Nineteenth Century
projective geometry had been developed by Felix Klein (1849-1924) and others (Chern).
Arthur Cayley (1821-1895) played an important role in developing modern linear
and abstract algebra (Suzuki, p. 707). Throughout the second half of the Nineteenth
Century there was a movement to arithmetize mathematics, encouraging the modern
emphasis on algebraic rather than geometric reasoning (Boyer). Georg Cantor (1845-
1918) proved several important foundations of set theory, including the fact that the
rational numbers are countable, but the real numbers are uncountable (Suzuki, p. 681).
He revolutionized the concept of infinity by showing that because the set of real numbers
is not countable its cardinality is a “larger” infinity than that of the set of counting
numbers (“Mathematics”). Richard Dedekind (1831-1916) advanced number theory and
set theory to include irrational numbers, proving that the domain of the real numbers is

continuous (“Mathematics™). In his book The Foundations of Arithmetic Gottlob Frege



(1848-1925) was the first to publish a theory of the natural numbers (Suzuki, pp. 677-
678).

Lucas contributed to the flurry of mathematical development during the second
half of the Nineteenth Century. He wrote papers about many subjects, including
astronomy, weaving, analysis, combinatorics, calculating devices, geometry, and
recreational mathematics (Williams, p. 53). He invented the still-popular game known as
the Tower of Hanoi, in which #n distinctive rings piled on one of three pegs on a board
must be transferred, in single peg-to-peg steps, to one of the other pegs, with the final
ordering of the rings remaining unchanged (Gridgeman). A version of one of Lucas’
chessboard puzzles was adapted for the computer nearly a century after his death
(Riamus). Lucas also published several volumes of mathematical recreations, which
included a variety of chessboard and geometry problems, among many others (Ball, pp.
124-125). Certainly these games help to explain his known popularity as a teacher
(Gridgeman).

Lucas’s most famous research centered on number theory, particularly the testing
for prime numbers. His most significant discovery was that it could be done without a
large number of calculations (Williams, p.57). Lucas proposed any number of theorems

concerning primality; among them was one discussing the Fermat numbers, which take

the form F, = 2% + 1.

LetF,=2"+1(r=2" and T, = 3. If we define the sequence {T;}
by Tiy1 = 2T,-2 -1 =1,23,...), then F, is a prime if the first term of this
sequence which is divisible by F, is T,.;. Also, F, is composite if none of
these terms up to and including T, is divisible by F,. Finally, if k [< 7]
denotes the rank of the first term which is divisible by F,,, the prime divisors
of F, must have the form 2"*'¢ + 1. (Williams, p. 99)



Lucas devised a theorem which provided the basis of the modern method of
testing the primality of Mersenne numbers, which take the form 2" — 1 (Gridgeman). His
version states:

Let M,, =2" — 1, where n = 1 (mod 4). Form the sequence r; = 4,
ry =14, ry =194, r, = 37634,..., where r;z; = r” — 2. The number M, is
composite if M,, [does not divide] ry for k = 1,2,3,..., n — 1; M, is prime if the
least value o of k such that M, | rpis such that (n + 1)2<a<n. Ifa<(n—1)/2,
then the prime divisors of M,, must have the form 2°n = 1. [Lucas wrote
2%m + 1, but this is clearly incorrect.] (Williams, p. 98)

Derrick Lehmer (1905-1991) expanded the theorem in 1930 to include all odd values of
n. His work yielded the technique known as the Lucas-Lehmer test (Williams, p. 112),
which is still commonly used today (Havil, p. 164). In 1876 Lucas used his own theorem
to identify 2'*” — 1 as a prime. This was the first new Mersenne prime discovered in over
a century, and was also the largest ever to be discovered without electronic help
(Gridgeman).
PART III: MATHEMATICAL DEVELOPMENTS LEADING TO LUCAS’S
THEOREM

Mathematical developments painting the background for Lucas’s Theorem
represent several separate fields: prime number theory, and the three areas that converge
in Pascal’s Triangle: figurative, or sequential, number theory; algebra; and
combinatorics. Interestingly, the Chinese know Pascal’s Triangle as Yang Hui’s
Triangle; the Iranians call it the Khayyam Triangle; and the Italians call it Tartaglia’s
Triangle (Pascal’s Triangle Builder). The varied nomenclature demonstrates the
disparate trails that led to Pascal’s accomplishment of unifying various results into one

figure.



Greeks of Pythagoras’ time as well as Egyptians as early as 300 B.C. were very
interested in number patterns (Edwards, pp. 1-5). Leonardo of Pisa (1170-1250), also
known as Fibonacci (Williams, p. 31), published the sequence of numbers named after
him in 1202, to solve the question of how many descendants a pair of rabbits can produce
in various periods of time (Phillips, p. 139).

Euclid expanded (a + b)* about 300 B.C. and Brahmagupta expanded (a + b)’
about 628 A.D. Al-Karaji discovered the binomial triangle around 1000 A.D. A century
later Omar Khayyam claimed to have raised binomials to the sixth power and higher.
Yang Hui showed the coefficients of (a + b)" up to the sixth power about 1261 A.D., and
Al-Kashi gave the general rule for positive integers about 1427 A.D. (Edwards, pp. 51-
52) About 1544 the German mathematician Michael Stifel (1487-1567) utilized the
figurate triangle to extract roots. He is considered the first in the western world to

discover the identity of the binomial and figurate numbers according to the equation

n —rt _
( J: frn 1 ,Where fkl — kl 1 +fkl_l ; fkl :fol :fol :1;

r

!
[=234,...k=123,..; f/ =Y f., (Edwards, pp. 5-7).

p=]
Combinatorics also has a long history, though Gottfried Leibniz (1646-1716) was
the first to use the term in the modern sense. Well in the pre-Christian era the Indian
mathematician Susruta systematically enumerated possibilities to arrive at the total
number of potential outcomes (Edwards, p. 27). Around 310 A.D., when studying

intersecting lines, Pappus derived a general rule for choosing 2 items from » different

things, specifically that f,'” =

n(nz— 1) (Edwards, p. 27). In about 1140, Rabbi Ben Ezra



(1092-1167), the inspiration for Robert Browning’s famous poem bearing his name
(Bradley, pp. 510-515), who was responsible for bringing much Eastern knowledge to
Europe (O’Connor, 1999), used the Hindu method for finding the number of
combinations of seven objects, in this case the then-known six planets and the sun, taken
r at a time, which yielded the combinatorial numbers 7C2, 7C3,. . .,7C7, or 21, 35, 35, 21, 7,
and 1, for a total of 120.

Gambling was the impetus for much combinatorial study in the Middle Ages.
During the Renaissance, Niccolo Tartaglia (1500-1557) created a general rule for
determining the number of unordered throws of n dice. He also devised a general
formula for solving cubic polynomials. It appears that both Tartaglia and his rival
Girolamo Cardano (1501-1576), who published a combinatorial triangle which he related
to the figurate triangle, understood that these two sets of numbers were connected to the
binomial expansion (Edwards, pp. 34-43). In 1636 Marin Mersenne (1588-1648)
published a collection of the rules of combinatorics. A young student named Blaise
Pascal (1623-1662) knew Mersenne, and followed Mersenne’s format when constructing
his famous triangle (Edwards, p. 47).

Prime numbers have been studied since the earliest days of mathematics.
Pythagoras understood the concept of primality (Valens, p. 18). Primes are a part of the
fundamental theorem of arithmetic, which was deduced if not explicitly stated by Euclid
(Suzuki, p. 126). Around 300 B.C. this great mathematician proved that the number of
primes is infinite, and in so doing created the abstract theory of prime numbers (Crandall,

p- 5). The Sieve of Eratosthenes, devised about 200 B.C., was an algorithm to calculate



primes. After this time there was a long period of apparent inactivity in research about
primality.

In the Seventeenth Century Mersenne asserted that the number 2" — 1 is prime for
n=2,3,5"7,13,17,19, 31, 67, 127, 257 and for no other values of n < 257 (Phillips, p.
169). His work was the basis for much of Lucas’s research, as was that of Pierre de
Fermat (1601-1665), who claimed wrongly in 1637 that Fermat’s numbers, as they
became known, are always prime (Crandall, p. 24). Despite this often-cited error in a
distinguished career, Fermat spurred interest in primality, and in his own work combined
the concepts of prime number and probability theory (O’Connor, 2005), leading the way
to combinatorics.

Gauss explicated the concept of congruence with regard to residue classes. In his
terminology, the expression x = u (mod n) indicates that x is congruent to u in terms of
residue (Phillips, p.172). Shown below in Gaussian form, Fermat’s Little Theorem,
which is an important precursor to Lucas’s Theorem, is clearer to the modern reader than
it would be in the original version. Fermat’s Little Theorem states that for any prime p
and any positive integer a that is not divisible by p, @’ = 1 (mod p) (Phillips, p. 174).
Joseph-Louis LaGrange (1736-1813) applied this theorem to polynomials, obtaining the
result that, “given any prime p and a polynomial f(x) = apx" + a X tax+a,
where p does not divide ay, then f(x) is satisfied by at most n distinct residues modulo p”’
(Phillips, p. 179). Leonhard Euler (1707-1783) generalized Fermat’s Little Theorem
from just primes to all positive integers (Phillips, p. 177). Using these earlier results,
themselves the outcomes of generations of mathematical study, Lucas was able to apply

the patterns elucidated in Pascal’s Triangle to create his theorem.



PART IV: LUCAS’S THEOREM, PROOFS, AND EXAMPLE OF USE

Lucas proposed his great theorem in 1878, in Section XXI of the massive journal
article Théorie des functions numériques simplement périodiques (Lucas), without
presenting an actual proof. A copy of the original version of this Section is in the
Appendix. The following mathematical statements, through the theorem itself, are
expressed using Lucas’s notation, which, relative to today’s notation, reversed the terms
next to the C. He approached the statement of the theorem by first noting two
fundamental formulas for determining the number of combinations of m objects taken

from n objects one at a time:

cr = mm—1)...(m—n+1) ’ and cr=cr, +C,’::1,
1.23...n

and then specifying that when p is a prime number and 7 is an integer between 0 and p

[exclusive], the congruence , C;‘ =0, (Mod. p) holds. For n between 0 and p—1

[exclusive], C;‘_l = (-1)", (Mod. p), and for n between 1 and p [exclusive], C;‘H =0,

(Mod. p). Lucas then observed patterns in Pascal’s Triangle and derived the general

statement: C, =C ;‘1‘[ X C;, (Mod. p), where W and v are the residues of m and n,

respectively. Further, C, =C,’ X C;: , (Mod. p). These congruences led to Lucas’s

Theorem:
C,=C,XC2XC. X...,(Mod. p),

m

> ,ﬂ3,... , and
V2

where W, W, U3,... designate the residues of m and of the integers of —,
p
the same for v;,v,,vs3,... with respect to n (Lucas).

One modern way of expressing Lucas’s Theorem is to let p be prime and suppose



r:rkpk+ .+ rp+ry 0<r;<p);

c= ckpk +...+cip+co (0<c;i<p) (Evans). “Then

r Ty no .
( j = ( J( j( J (mod p)” (Riddle).
c ¢, ) \e, \ry

105
The theorem can be used to calculate a number such as ( 24] mod 3, as follows:

10510 = 102203, and 24y = 2205; pairing the digits of these base 3 numbers

()BT e

105
therefore = | mod 3.
24

yields

and

The several proofs offered for Lucas’s Theorem are primarily of two types,
algebraic and combinatorial. The following algebraic proof is based on the Binomial

Theorem for expansion of (1 + x)". Let

r

mef —(l+x) = f[[(1+ o |

c=0

(1+x”")™ (mod p), [since (1+x)” =1+x" (mod p)]

(7T, 5"
L;)(Smjx } (mod p)
[ZHCﬂx (mod p).

where for each value of ¢, the inner sum in the last sum is taken over all the

SR

Il
o

m

k
sets (50,51,52,...,5¢) such that 0 < s, < ¢,, < p and ZSmp”’ = ¢. But there is

m=0
at most one such set of coefficients, given by s,, = ¢, if every ¢, < r,, (since
there is a unique representation for the p-ary form of c¢.) If ¢, > r,, for some m,



then the inner sum is zero. In either case, the theorem follows by equating
coefficients of x° for each 0 < ¢ < r. (Riddle)

Anderson et al. have presented a longer, combinatorial proof of Lucas’s Theorem
(Anderson).

Lucas’s Theorem can be used to solve very difficult problems in combinatorics
and probability. For example, in a computer security algorithm, each employee’s

identification number can be made to be congruent mod 23, and is constructed using

000
choose notation, i .e.,( 50 J . To access a file, the employee would enter the number

10000050. Clearly, the larger the modulus the more secure the system. All assigned

identification numbers are congruent to 11 mod 23. If someone types in the identification

2234
number 22340197, it is critically important for the computer to tell if ( 167 j is

2234
congruent to 11 mod 23. The number ( 197 j 1s so large that it would cause an overflow

error in almost any computer system. With Lucas’s Theorem the calculation becomes

manageable: in base 23, 2234 is 453, and 197 is 8(13) (13 is a single digit in base 23),

2234 . 4\5Y) 3 ..
SO is congruent to =1x0x0=0mod 23. This is not congruent to
197 0A8\13

11 mod 23, so the person trying to login is either a hacker or a poor typist.

PART V: EXTENSIONS AND GENERALIZATIONS OF LUCAS’S THEOREM
Even today, Lucas’s Theorem is being studied widely, and has been both
extended and generalized, particularly in the area of binomial coefficients. Richard

Bollinger and Charles Burchard applied the theorem to Pascal’s Triangle, proving given



that pis a prime, and thatn =np+np + ...+ np,0<n;<p, andk=ko+ k;p + ... + kpp',

0<ki<p,0<k<(m—Dn, that “Cu(nk) = Y, []C,(m.s,) (modp) where the sum

(Sgms,) =0
is taken over all (r + 1)-tuples (sg,s7,...,s,) such that i) so + s;p + ... + s,p' =k, and ii) 0 <
s; < (m —1)n;; if k is not representable in this form then certainly C,,(n,k) = 0 (mod p)”
(Bollinger).

In the same area of research, Alexis Bes generalized Lucas’s Theorem to mod
prime powers. This accomplishment obviously serves to improve the security of
cryptographic applications (Bes).

Jacques Boulanger and Jean-Luc Chabert have recently extended Lucas’ Theorem
to linear algebra and even topology.

Let V be a discrete valuation domain with finite residue field. Denote

by K the quotient field of V, by v the corresponding valuation of K, by m
the maximal ideal of V, and by ¢ the cardinality of the residue field V/m.

We denote by K , 17, and m the completions of K, V, and m with respect

to the m-adic topology and we still denote by v the extension of v to K...
The polynomials C,(X) form a basis of the V-module Int(V)....
fn=no+mq+...+mqg" is the g-adic expansion of a positive integer n,
and if x =xo + x17 + ... + x;# + ... is the t-adic expansion of an element x

of V, then C,(x) = C, (x,)C, (x))..C, (x,) (mods). (Boulanger)

In a related field, Neyamat Zaheer generalized Lucas’s Theorem to vector-valued abstract
polynomials in vector spaces (Zaheer).
To formulate a divisibility theorem, Tyler Evans applied Lucas’s Theorem to

Euler’s ¢ function. “Forn>1,m=Mn+my, r=Rn+ry, 0 <mg, ro<n

Z¢[§j S 3 (Mj (M]( "= Jso (modn)” (Evans).

din j=—(d-1) lal;= \ & a, \r,+(nld)j
R-(jld)



The breadth and longevity of research applying Lucas’s Theorem to new areas of
mathematics demonstrate the significance of this theorem. Last summer the author,
under the direction of Professor Daniel Pritikin, extended Lucas’s Theorem to determine
how many entries in a given row of Pascal’s Triangle are equivalent to a given number
modulo 3 or 5. In the simpler case, mod 3, the number of entries with remainder 1 in row

n was calculated to be

fi(n) = 29" o[32" +1]/2,
and the number of entries with remainder 2 in row n was calculated to be

fo(n) = 29 0[32" —1]/2,
where c;(n) is the number of 1’s in the base 3 expansion of n and c,(n) is the number of
2’s in the base 3 expansion of n (Smith).

Clearly, in the author’s opinion, Lucas’s Theorem is great. It amalgamates

centuries of mathematical work, it is a useful tool on its own, and it also has been a
building block of significant developments in diverse areas of mathematics in the decades

since its exposition.
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Omn a, da midome

o= G O, (Mod. gy,
&, par sulls,

(157] O3 e O O e L., (Mod, B,
HMiy Mag Ma oo- ddsignant les pésides de e el des entiers de :;},%,-;—L,_._ .
obf de méme pomr e, ¥as Py ooea s

Par sonadquant, & 'on vesk teouver la pesta da la division de €7 par on
nansbre premicr, il sofit Aappliquer la formusle précédente, jusqu’d ce qu'on
ait ramend las doux indices de O & des nomilires infericars & =~

Noms venons de valr que lea poaffisienta de ls poizasnes p da bisdee aont
enkiers et divisibles par g, Toesgua p ddsigne an nombes prasniar, an exceplant
tombefois b coefliclonta dea poiassnces g=, En désignant par o, &, 30 - ... 3,
dies antlars quelssngues, #n nombre o, on & done

[a+8+g 4o+ 27—+ @ty 2] =0 (Mod g,
ek, poit e =T =9 = .... =i =1, on obtient
B e o=, (Mad. gl
Cest dans estte comgruenee gqme oonslste be théoréme de FErMaT, que T'os
pent généraliser de la maniére auivante, difffrente de celle que Pon doid &
Errer. B4 e, J. 3, oo A designent les paissaness ¢° des racines d'nma
dpmation & oseflicients entiors, &t &, leur sommae, le premier membre de e
cangruence précidests représante lo produit por g d'une fonction sy médrique,
antites et 4 coeflcieats entiers, des reoi ek, par < iy 1, des coaflicients
e Péquatine prroposés.  Om a dons
Hom= 8, (Mad @),

at, por Vapplication do théoréme da FERMaT,
(1393 o= &, (Mod @i,

L'étude das divisears pl'ctni:r: de [a fonchion namérigues &, ot de qu:!qm
AUy r|.11r.|.'||;|gu¢a. sl Erfseimportante; om o, Gn pﬂ.rl.Lculelr, pror o — 1 o=t
B, =@, eomme dans |'-i-q|liIJ.-ur|.

FT=r41,
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la congreense

Sp =10, (Mol Pl
on en dédmil imversemant que sn daess e con f8 5, = 0, oa e 5, disishle par o,
pour = p, of Ao auperesend, b somles @ osl o aombes prencer. Boo effer,
aapeanns @ égal, par exsnple, pe produit da deox nombres prosniers g ef i

i a
S S, (Mod )
gy =y (Bilod. &1y
par conssquent, s Lom a tronwd
=0, (Mol gk,

&=, (Mnod. &,

H=0, (Mod g,
wt, par [& théordne démantrd,

B oo Hy =0, (Mol gh).
Ainsi &, ne gersit pas la premior des nosbres 8, divisible par gk
e peut abtenie, de sette fagon, un grand nombrs de théormmes servant,

comnoe celui de Winsow, 4 wérifier ez nombess premiors. Nous lajserons
de oild, pour Uinstant, Jes ddveloppaments curiens et nouveaus que nons
avona ainal bbouvés, poar me gonsidérer ke £Aux Jjue Ton tire des fonctions
mumarigues simplement péradiques,

Of ANFE Bossi

Seorron XXIL

Sur da MAdarie des melivas pmu.-i.;l-a iases Linws FEOEAES dide ] Prrarass o
ardtbredtigma,

La doctrive des nombres promisrs a &td abmuchés par EvcLine et
EmaTostuins.  On dait 4 Eocirpe la théorie des divisears et des ultigles
commues de denx on plesieurs nombres donnds, la repriésentstion des som-
bres composés & 1"aide de lears fectegrs, ok la démonstration de Vinfinitd des
wombices presabers, qua Des peul sendre facklamant & s preuve de Uinfinite
des mombres premiers appartopsst ang formes lindadres 4 + 3 et dx &,
Nopgs denmetons, dans le Section XX IV, une dimonsirstion dlmoentalrg com-
warnant Minfoitd des nombres pramiers de ls forme me + 1, quells qgue soit ba
valonr do we, On sait dA'aillears qoe, par I'ﬂmp!ui. des séries infinies, LEiEGmE-—
DMurcmrer est porvenu 6 démomtrer Uinfinibkd des nombres premiers de s



