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Introduction

The works of Archimedes (c. 287–212 BCE) read like modern mathemat-
ics: fully-formed, to the point, and clever. Heath calls them “monuments
of mathematical exposition” that are “so impressive in their perfection as to
create a feeling akin to awe in the mind of the reader” [14]. Many histories of
the calculus begin with Archimedes, and they highlight the parallels between
his discoveries and results that are found today by limits, infinite series, and
integration techniques, even going so far as to assert that the differences in
approaches may be more in words than in ideas [4]. A student may wonder
why, if Archimedes’ discoveries are so novel and modern in style, he is not
credited with the discovery of the calculus. Historians award that distinc-
tion unequivocally to Newton and Leibniz, who lived nearly two millennia
after Archimedes. To investigate whether Archimedes should instead be ac-
knowledged as the first mathematician to “do calculus,” we will explore three
aspects of his work that are related to the calculus: his mechanical method,
which anticipates integration techniques; his quadrature of the parabola,
which demonstrates how to handle infinite series; and his investigations into
spirals, which involve properties of tangent lines.

As a whole, ancient Greek mathematicians banned infinity from their
formal demonstrations, because at the time the concept was not grounded
on any logical basis. Intuition often failed when considering questions of the
infinite and how to divide the continuum, as exemplified by Zeno’s famous
paradoxes which, to some, have since been resolved by modern formulations
of the calculus [4]. However, until the 19th century, most mathematicians
were unwilling to accept infinity as anything more than a “potential,” as ex-
emplified by the “never-ending” infinite sequence 1, 2, 3, . . . versus the “com-
pleted” set {1, 2, 3, . . . } [22]. How the ancient Greeks grappled with this idea
is summarized in Aristotle’s Physics:

. . . clearly there is a sense in which the infinite exists and an-
other sense in which it does not . . . magnitude is never actually
infinite, but it is infinite by way of division—for it is not diffi-
cult to refute the theory of indivisible lines—the alternative that
remains, therefore, is that the infinite exists potentially. [12]

In general, we find that the Greeks “stood still before the abyss of the infinite
and never ventured to overstep the bounds of clear conceptions” [2]. For
them, arguments relying on infinity simply would not pass logical muster,
but concepts of infinity and its formal approaches, especially considering
limits and continuity, are necessary components of the calculus.

Like many of his contemporaries, Archimedes possessed a “horror of the
infinite” [9], but his methods were more refined than many of his peers’ tech-
niques. He proceeded cautiously and relied heavily on “sterile and rigorous”
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arguments by double reductio ad absurdum, especially in proofs involving
area or volume [11]. That is, he used proofs by contradiction to show that
an area can be neither less than nor greater than a given magnitude, so
that the area in question must be equal to that magnitude. This indirect
method of proof, whose discovery is credited to Eudoxus, is more appro-
priately called the compression method rather than the exhaustion method.
As Dijksterhuis points out, the mode of reasoning arose from the idea that
the infinite is inexhaustible, so the name “exhaustion method” is “about the
worst name that could have been devised” [8]. The approximation method is
another indirect method of proof, distinct from the compression method, in
which Archimedes approximates a magnitude from below by a partial sum
and then shows that the difference between the magnitude and partial sum
can be made less than any given magnitude [8]. This treatment of infinite
series closely resembles our current reasoning, and the only example of it in
Archimedes’ work occurs in his Quadrature of the Parabola, discussed below.

For easier understanding, we often present Archimedes’ results in mod-
ern notation, but we do so at the risk of misunderstanding the ancient
Greeks’ perspective. They had neither analytic geometry nor symbolic al-
gebra, which, perhaps more than anything else, delayed progress toward the
calculus as we know it today [6]. Greek mathematics lacked a general def-
inition of number, and thus they did not develop any notion of variables
representing continuous values [4]. Instead, their theory of proportion, as
laid out in Book V of Euclid (and its discovery again credited to Eudoxus),
involved geometric magnitudes as ratios to one another. For example, the
statement, “the area of the circle is equal to πr2,” would be nonsense to
Archimedes. Instead, he would tell us that the area of the circle is “the same
as that of a right triangle with height equal to the radius of the circle and
base given by the circumference of the circle” (as proven in Measurement
of a Circle, Prop. 1). While it is interesting to note that Eudoxus’ theory
of proportion anticipated Dedekind cuts by over two millennia [22], the an-
cient Greeks did not perceive numbers, areas, or shapes in the way that we
now perform calculations or plot curves. They were far more interested in
geometry as an unchanging and ideal mode of reasoning, rather than a prac-
tical science, which would motivate the development of the calculus in the
centuries to come.

Even though the Greeks formally did not speak of any kind of “completed
sums” of infinite series or “infinitely close” approximations to limiting values,
they likely arrived at these notions in their discovery processes. Writing
in 1685, John Wallis hypothesized that “the Ancients had somewhat of a
like nature with our Algebra” and that we should not think that “all these
Propositions in Euclid and Archimedes were in the same way found out,
as they are now delivered to us” [12]. Heath supports this view, supposing
that the Greeks had techniques “hardly less powerful than those of modern
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analysis” and claiming that Archimedes’ use of indefinitely narrow strips in
The Method (shown below) “would be quite rigorous for us today, although
it did not satisfy Archimedes himself” [2]. To Archimedes, his method of
discovery merely indicated, but did not prove, that a result was correct.
Because of this, he recast all his analysis in classical geometric constructions,
much in the same way Newton would conceal his fluxions nearly 2,000 years
later in The Principia [9]. Thus, Archimedes’ readers are left to wonder:
how could one man discover so much, and how could he craft such ingenious
arguments to support his discoveries?

The Method: A Balancing Act

Archimedes’ results are crown jewels in the Greek tradition of pure logic and
precise argument, but it is clear that they were not discovered in the same
way that they were proven. Until On the Method of Mechanical Theorems,
for Eratosthenes (shortened to The Method) was discovered in 1906, the
techniques that Archimedes used to find his results remained hidden. Lit-
erally hidden, in a palimpsest, partially erased underneath medieval prayers
and gold-leaf illustrations, until the writing was fully analyzed in the 21st
century using X-ray, infrared, ultraviolet light, and other advanced technol-
ogy [17]. This manuscript (referred to as Codex C), copied sometime in the
10th century, is the only source we have for The Method, one of the most
tantalizing documents in the history of mathematics.

In it, Archimedes writes to Eratosthenes (who was head librarian at
Alexandria and who measured the circumference of the Earth) to explain
how he found results that he previously communicated but did not prove.
He encourages Eratosthenes to investigate the problems himself and suggests
trying his “mechanical method” to get started, explaining:

. . . certain things first became clear to me by a mechanical method,
although they had to be demonstrated by a geometry afterwards
because their investigation by the said method did not furnish
an actual demonstration. But it is of course easier, when we
have previously acquired, by the method, some knowledge of the
questions, to supply the proof than it is to find it without any
previous knowledge.1

Thus, the reader is provided an intimate glimpse into Archimedes’ method
of discovery, which reveals how he, long before he knew how to prove his
theorems, became convinced of their truth [8].

His method revolves around the law of the lever, which, in a modern
form, states that two objects are in equilibrium about a point (called the

1Unless otherwise noted, all translations of Archimedes’ writings are from [2].
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Figure 1: The law of the lever. The two objects balance if F1d1 = F2d2.

fulcrum) if their moments (or torque) about the point are equal. Referring
to Figure 1, given two objects of different weight, F1 and F2, that are placed
on a rigid beam at different distances, d1 and d2, from a fulcrum, they will
balance if

F1d1 = F2d2 (1)

However, Archimedes did not state the law like this. Starting with sev-
eral postulates, in On the Equilibrium of Planes he writes the following in
Propositions 6 and 7:

Theorem 1 (Archimedes’ law of the lever) Two magnitudes, whether
commensurable [Prop. 6] or incommensurable [Prop. 7], balance at distances
reciprocally proportional to the magnitudes.

Algebraically, Archimedes restates Equation (1) as

F1

F2
=
d2
d1

(2)

We see that if two objects are the same density, we do not need to refer
to their “weights” and can simply refer to their “magnitudes,” whether we
take that to mean mass, area, volume, or something else. Thus, Archimedes
adapts a physical idea from mechanics to a more abstract mathematical tech-
nique. In this respect he is unique among the Greeks, who were predisposed
to completely separating their mathematics from physical applications. Di-
jksterhuis claims that Archimedes was “the first to establish the close inter-
relation between mathematics and mechanics, which was to become of such
far-reaching significance for physics as well as mathematics” [8].

To illustrate the method, let us find the volume of a sphere as he does in
Proposition 2 of The Method. In modern notation, the volume of a sphere
with radius r is V = 4

3πr
3, and the volume of a right cone with radius r and

height h is V = 1
3πr

2h. If the radius and height of the cone are equal to the
radius of the sphere, then the volume of the sphere is 4 times that of the
cone. Here is how Archimedes expresses this:
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Theorem 2 (Archimedes’ volume of a sphere) Any sphere is (in re-
spect of solid content) four times the cone with base equal to a great circle of
the sphere and height equal to its radius.

To see why this is true, let ABCD be a great circle of a sphere, with
AC = BD as perpendicular diameters (Figure 2). In the same plane as circle
ABCD, let the isosceles triangle AEF be a cone’s cross section with height
and radius equal to AC, and let rectangle EFGL be a cylinder’s cross section
with height and radius equal to AC. That is, the triangle and rectangle both
have heights equal to the diameter of the circle and have bases equal to twice
the diameter of the circle. Extend AC to H so that AH=AC. Perpendicular
to AC, construct MN connecting sides EL and FG. Referring to Figure 2,
we wish to show that the volume of the sphere is equal to 4 times the volume
of the cone ABD.

Figure 2: Volume of a sphere by Archimedes’ mechanical method.

From Heath’s proof [2], since MS = AC = AH and AS = QS, we have

MS ·QS = AC ·AS
= AO2

= OS2 +QS2

Now multiply OS2 +QS2 = QS ·MS by πAH:

AH(πOS2 + πQS2) = QS · π(AH ·MS)

AH(πOS2 + πQS2) = AS · πMS2 (3)

Now we regard CH as a lever, with the fulcrum at A. Note that πOS2

represents a circular cross section of the sphere, πQS2 represents a circular
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cross section of the cone AEF , and πMS2 represents a circular cross section
of the cylinder. Applying the law of the lever, we see from Equation (3) that
the sum of the cross sections of the sphere and cone at distance AH from the
fulcrum will balance the cross section of the cylinder at distance AS from the
fulcrum. As we change the placement of segment MN or “sweep” it across
the rectangle, we obtain all circular cross sections of the solids. Taking all
these cross sections and “hanging” them on either side of the fulcrum, we
see that the sum of the sphere and cone AEF at distance AH balances the
cylinder at distance AK (its center of gravity), or by Equation (2):

cylinder

sphere + cone AEF
=
AH

AK

But AH = 2(AK), so the cylinder = 2(sphere+cone AEF ). Archimedes
would have known from Euclid (XII.10) (and he states so in the introduction
of On the Sphere and Cylinder I ) that the cone AEF has one third of the
volume of the cylinder in which it is inscribed. Therefore, cone AEF =
2(sphere), and by construction, EF = 2BD, so

cone AEF = 23(cone ABD)

2(sphere) = 8(cone ABD)

sphere = 4(cone ABD)

which was to be shown.
Of course, Archimedes did not demonstrate his proposition exactly like

this (especially the step where we multiply by π), but the fundamental idea
of his method is still present: to find an area or volume, cut it up into a very
large number of thin parallel strips and hang the pieces on the end of a lever
so that they balance with a known shape. In doing so, Archimedes regards
surfaces as being made up of lines and in turn, solids made up of surfaces.
To most students first learning integral calculus, this idea would seem very
familiar and intuitive. In his introduction to Archimedes’ works, Heath even
refers to the procedure as “genuine integration” [2].

Although Archimedes captured the spirit of an integral, to claim that
Archimedes performed integration is to misinterpret the strict definition of
an integral, as the limit of an infinite series and not as the sum of an infinite
number of points, lines, or surfaces [4]. Archimedes’ method is only “rigorous
enough for us today” if we grant him our modern definitions of number, limit,
and continuity. Furthermore, Sarton states that it is misleading to even
use the word “method,” because Archimedes did not have a general way to
compute integrals, and he calls each solution “rigorous but inapplicable to
other problems” [19]. Thus, rather than speaking of Archimedes performing
integration, it is more correct to say that Archimedes anticipated integration,
or that, of the ancients, he came the nearest to actual integration.
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After demonstrating the volume of the sphere in The Method, Archimedes
goes on to conclude that a sphere inscribed in a cylinder has a volume in a 2:3
ratio with that of the cylinder. This is formally proved with his compression
method and stated as a corollary after Proposition 34 in On the Sphere and
Cylinder I, a work believed to have been written just after The Method [14].
Furthermore, he proved that the same sphere and cylinder also have surface
areas in a 2:3 ratio. Archimedes so highly regarded this beautiful result that
according to Plutarch he wished the shapes to be engraved on his tombstone
[18]. When Cicero served as quaestor in Syracuse in the 1st century BC, he
searched the “great many tombs at the gate Achradinae” and found “a small
column standing out a little above the briers, with the figure of a sphere and
a cylinder upon it” [7]. Archimedes’ tomb has since been lost, and we can
only hope that, like The Method, it may one day be discovered again.

Sum Discoveries with Parabolas

Another one of Archimedes’ most celebrated discoveries is his determination
of the area of a segment of a parabola, or what he would have called an
orthotome, a section of a right-angled cone [8]. While mourning the loss of his
friend Conon, Archimedes writes to Dositheus in Quadrature of the Parabola
that he did not believe any of his predecessors had attempted the problem
and that the area was “first discovered by means of mechanics and then
exhibited by means of geometry” [2]. A demonstration by the mechanical
method takes up roughly the first half of Quadrature of the Parabola, while
the latter part is devoted to a formal proof using his approximation method
with a geometric series.

Witnessing the power of his mechanical method, it may seem strange that
Archimedes would seek an alternative demonstration for a formal proof. Ac-
cording to Dijksterhuis, “when Archimedes denies the demonstrative force
of his mechanical method which he explains to Eratosthenes, he does not
do so on account of its mechanical nature, but exclusively because it makes
use of the method of indivisibles” [8]. It is unclear how exactly Archimedes
meant for his cross sections to be to be understood, either as being “infinitely
thin” or having a “very small but non-zero” width. Because he viewed them
physically balancing like thin strips or laminae, he likely held beliefs similar
to Democritus’ atomic theory, where there exist smallest indivisible bodies
from which everything is composed [3]. Eves supports this, claiming that
the mechanical method has “the fertility of the loosely founded idea of re-
garding magnitude as composed of a large number of atomic pieces” [11].
Nevertheless, Archimedes realized he could not justify the use of indivisibles
with the mathematical tools at his disposal, and for this reason he sought
geometric proofs to his findings. Plutarch’s 1st century account captures
Archimedes’ attitude toward his mechanical discovery process vs. proof with
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pure geometry:

Regarding the business of mechanics and every utilitarian art as
ignoble and vulgar, he gave his zealous devotion only to those
subjects whose elegance and subtlety are untrammelled by the
necessities of life. . . in them the subject-matter vies with the
demonstration, the former possessing strength and beauty, the
latter precision and surpassing power. . . [18]

Of course, the area of a parabolic segment can be found today with inte-
gral calculus, and it is one of the first results a student will learn. Although
the computation is easy with the machinery of modern formulas, it should be
reiterated that Archimedes lacked analytic geometry and symbolic algebra.
Thus, his techniques are not merely routine algorithms, but intricate argu-
ments that utilize double reductio ad absurdum, special properties of conic
sections, and even notions of infinite geometric series. Like his work with
the volume of a sphere, his goal was to compare the area of the parabolic
segment to a more well-known shape, in this case a triangle:

Theorem 3 (Archimedes’ area of a parabolic segment) Every segment
bounded by a parabola and a chord is equal to four-thirds of the triangle which
has the same base as the segment and equal height.

We will now explore how Archimedes proved Theorem 3 with his ap-
proximation method, as in Proposition 24 of Quadrature of the Parabola.
Let ABC be a parabolic segment which is bounded by the chord AC, and
let D be the midpoint of AC (Figure 3). From the definitions given after
Proposition 17, Archimedes defines the “base” of the parabolic segment as
AC and the “vertex” of the segment as B, the point from which the greatest
perpendicular to base AC is drawn. (Another way to describe the vertex B
is that it is the point at which the tangent to the parabola will be parallel
to the base AC [20, 21].) Note that Archimedes’ definition in this context is
different from our modern definition of the vertex of a parabola.

Construct triangle ABC, which is inscribed in the parabolic segment.
Referring to Figure 3, we wish to show that the area of the parabolic segment
is 4

3 the area of triangle ABC.
Next, define a smaller parabolic segment APB with AB as its base and

P as its vertex. Construct triangle APB as above, so that it is inscribed
between the parabola and triangle ABC. Similarly, define a parabolic seg-
ment BQC, where BC is its base and Q is its vertex, and construct triangle
BQC. This construction can be continued, inscribing smaller and smaller
triangles by the same procedure. Thus, we construct a many-sided polygon
inscribed in segment ABC that approximates the area of the segment from
below.

9



Figure 3: Area of parabola by Archimedes’ approximation method.

In Propostion 21, Archimedes establishes that the height PR is 1
4 of

BD, and the width of triangle APB is 1
2 that of ABC (Figure 3) [21]. So,

triangles APB and BQC are each 1
8 of the area of ABC. Together, they

are 1
4 of the area of ABC. As we construct more and more triangles, the

two new inscribed triangles in each segment will bear the same 1:4 ratio that
APB and BQC bear to ABC.

At this point in the proof we must digress to explain how these triangular
pieces can now be added up. Let the area of triangle ABC be A. From a
modern understanding, if we perform our construction n times, the approx-
imate area of the parabolic segment is given by the partial sum Sn with an
summands:

Sn = A

(
1 +

1

4
+

1

42
+ · · ·+ 1

4n−1
+

1

4n

)
Letting n→∞, the sum of the geometric series approaches 4

3 . Therefore,
the area of the parabolic segment is 4

3A, which was to be shown.
However, passing to a limit is precisely what Archimedes did not do [5].

We again find in Aristotle’s Physics a summary of the Greek view on infinite
series:

. . . as we see the magnitude being divided ad infinitum, so, in
the same way, the sum of successive fractions when added to one
another will be found to tend towards a determinate limit. For
if, in a finite magnitude, you take a determinate fraction of it
and then add to that fraction in the same ratio, and so on, but
not each time including one and the same amount of the original
whole, you will not traverse [i.e. exhaust] the finite magnitude.
(Clarification by [12])

Instead of “exhausting” an infinite sum of triangles, Archimedes considers
the remainder between the parabola and the inscribed many-sided polygon.
In Proposition 23, he proves the following (using Heath’s notation):
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Theorem 4 (Archimedes’ geometric sum) Given a series of areas A,B,
C,D, . . . Z, of which A is the greatest, and each is equal to four times the
next in order, then

A+B + C + · · ·+ Z +
1

3
Z =

4

3
A

If for simplicity we let A = 1, the equation above is equivalent to

1 +
1

4
+

1

42
+ · · ·+ 1

4n−1
+

1

4n
+

1

3

(
1

4n

)
=

4

3
(4)

To see why the equation holds true, we will use modern notation, but let
us not forget that Archimedes explained his reasoning in words, not symbols.
Note that

1

4n
+

1

3

(
1

4n

)
=

4

3

(
1

4n

)
=

1

3

(
1

4n−1

)
Thus, the left side of Equation (4) becomes

1 +
1

4
+

1

42
+ · · ·+ 1

4n−2
+

1

4n−1
+

1

3

(
1

4n−1

)
That is, we replace our last two terms by the term (1/3)(1/4n−1), which

we will refer to as the “remainder” left between the parabola and the ap-
proximating polygon. In the process above, we are effectively lowering our
largest exponent, n, to n − 1, and as we repeat this process, our remainder
can be made less than any assigned magnitude [8, 21]. In a finite amount of
steps, the left side of Equation (4) will telescope to 1 + 1

3(1), or 4
3 .

Many of us would conclude our proof here, but Archimedes kept going.
He proceeds to use Theorem 4 and double reductio ad absurdum to show
that the area of the polygon inscribed in the parabola can be neither less
than nor greater than 4

3 triangle ABC, so the area of the parabolic segment
must be equal to 4

3 triangle ABC.
First, suppose the area of the polygon is greater than 4

3 triangle ABC.
By Theorem 4, if we let the area of triangle ABC be A, we see that A+B+
C + · · ·+ Z < 4

3A, contradicting our supposition.
The second contradiction argument is much more subtle (see [8] for more

details). Suppose the area of the polygon is less than 4
3 triangle ABC. Let

Σ denote the area of the parabolic segment, let K = 4
3(triangle ABC)= 4

3A,
and let Sn denote the area of the polygon after performing our construction n
times, where an is its final summand. Referring to Theorem 4 and Equation
(4), we find n so that

1

4n
A <

4

3
A− Σ or an < K − Σ
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In other words, we perform our construction enough times to arrive at
an area that is less than the difference between 4

3 triangle ABC and the area
of the segment. We see that K now exceeds Sn by an area less than an, and
Σ exceeds Sn by an area greater than an, or

K − Sn < an < K − Σ

Therefore, Sn > Σ, which contradicts our supposition. Thus, since the
area of the parabolic segment is neither greater than nor less than 4

3 triangle
ABC, it must be equal to 4

3 triangle ABC, which was to be shown.
In Archimedes’ approximation method we see one of the most sophisti-

cated uses of a double reductio ad absurdum in ancient times. His treatment
of an infinite geometric series with finite partial sums is remarkably similar
to how Cauchy and others in the 19th century would handle the process,
by producing a target value and proving that the series cannot be either
greater or less than that value. To a modern mathematician, an infinite se-
ries is the succession of approximations by finite sums, and the Archimedean
understanding has become a foundational part of real analysis [5].

The series above is not the only one found in Archimedes’ work. In
On Conoids and Spheroids, he goes beyond the two-dimensional area of a
parabolic segment and finds the volume of a segment of a paraboloid. This
result was so far ahead of its time that it was not rediscovered for another
millennium, when Middle Eastern mathematicians independently proved it
(though they had access to many of Archimedes’ works, to our knowledge
they did not possess On Conoids and Spheroids [15]). By slicing the solid
into “equal parts by planes parallel to the base,” his work with conoids may
be the closest Archimedes came to actual integration. The series, which is
only one aspect of the proof, and its geometrical demonstration are “in broad
outline equivalent to performing the integration indicated by

∫ a
0 xdx” [4]. In

addition, while calculating the area of a turn of his spiral in On Spirals, he
supplies a series that is equivalent in polar coordinates to

∫ b
a θ

2dθ [9]. This
is another instance of his phenomenal ingenuity, but it is also another case
where his technique is specific to the problem at hand and not applicable
generally.

To say that Archimedes “computed”
∫
xdx or

∫
x2dx is to impute a mod-

ern bias and misunderstand Archimedes’ intentions. By all indications, it
seems that he wished to construct the solution to interesting geometric prob-
lems and not to generalize his results into any kind of new branch of math-
ematics [15]. This is in contrast to the methods of the handful of mathe-
maticians in the 17th century who found demonstrations of

∫
xkdx for higher

powers of x which led directly to algorithms of the calculus [4]. Furthermore,
Archimedes’ use of a geometric series in the quadrature of a parabola appears
to be unique to quadratic functions; his method does not yield geometric se-
ries in general for other segments of plane curves [23]. Thus, it is doubtful
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whether Archimedes should be credited with discovering any general inte-
gration formulas or processes. However, this should not belittle what he did
discover. Instead, our discussion highlights just how far ahead his ideas were,
by preceding integral calculus and the rigorous treatment of infinite series
by two millennia. We regard his determination of the area of a parabolic
segment as important not so much because it helps us to compute areas,
but because it suggests a way to define the general concepts of area and the
integral [1].

Touching on Spirals

So far we have addressed problems concerning area, volume, and accumula-
tion, which historically precede problems about tangents, slopes, and rates
of change. These two problem types and their inverse relationship constitute
the fundamental theorem of the calculus. As nearly all ancient Greek math-
ematicians were also philosophers, they stressed the abstract, ideal state of
things, because “[r]elationships in the material world were subject to change
and hence did not represent ultimate truth, but relationships in the ideal
world were unchanging and absolute truths” [16]. Thus, they were more
concerned with form than variation, and results related to differential cal-
culus only exist in a few isolated cases [4]. In general, understanding the
derivative as an instantaneous rate of change or as the slope of a tangent
line is more intuitive when it is in the context of a functional relationship,
which would not really come about until after the innovations of algebra and
analytic geometry. Specifically, tangent line constructions would not become
a widespread topic of investigation until about 1635, beginning with the work
of Fermat. However, studies of motion were apparent in astronomical works,
including those of Hipparchus of Nicaea, who lived about a century after
Archimedes. He gave the first functional relationship between the chord and
the arc of a circle, and over many centuries this would evolve into the sine
function [6].

At the beginning of Book III of his Elements, Euclid gives the definition,
“A straight line is said to touch a circle which, meeting the circle and being
produced, does not cut the circle” [10]. We see that his definition of a tangent
line relies on the imprecise word “cut” (meaning that a line intersects the
circle more than once, or divides it into two parts), and it is restricted only
to that of a circle. Furthermore, the property that the tangent line will only
intersect the circle once does not hold in general for other curves (such as
an Archimedean spiral with multiple turns, see below). In Proposition 16 of
the same book, Euclid refers to a line tangent to the circle such that “into
the space between the straight line and the circumference another straight
line cannot be interposed.” This definition was adopted by Apollonius, who
generalized tangent lines to other conic sections [8]. Virtually no methods
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Figure 4: Archimedean spiral with 3 turns and Boyer’s interpretation of the
tangent line as the resultant of two-fold motion.

for the construction of tangent lines exist in Greek mathematics, apart from
Apollonius’ work and an isolated example in Archimedes’ construction of a
tangent to his spiral [9]. Archimedes’ result is found in the aptly named On
Spirals, arguably his most beautiful work.

Archimedes defines his spiral after Proposition 11:

If a straight line drawn in a plane revolve at a uniform rate about
one extremity which remains fixed and return to the position
from which it started, and if, at the same time as the line revolves,
a point move at a uniform rate along the straight line beginning
from the extremity which remains fixed, the point will describe
a spiral in the plane.

Thus, the Archimedean spiral is generated by two uniform motions: by
the line rotating about the origin of the spiral, and a point moving outward
from the origin along the line. By construction, as Archimedes states in
Proposition 12, if lines are drawn from the origin at equal angles between
each other, then the points of intersection will be separated by a constant
distance, i.e. they will be in arithmetic progression. Similarly, any line drawn
from the origin intersects successive turnings of the spiral in points with a
constant distance, giving a spiral with multiple turns the appearance of a
“constant width” between turns (Figure 4).

As the Greeks were more interested in stationary forms, it is noteworthy
that Archimedes describes his spiral in terms of moving bodies. Though
Archimedes did not express the idea, Boyer hypothesizes that he borrowed
ideas from kinematics in the same way that he drew from mechanics in The
Method [4]. Archimedes may have had some notion of the two-fold uniform
motion acting like vectors: the generating line with uniform velocity vL
rotates perpendicular to the point moving away from the origin at uniform
velocity vP , and the resultant, given by the parallelogram rule, produces the
tangent line to the spiral (Figure 4). Although he would surely understand
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Figure 5: The tangent line PT can be drawn such that OT = (arc KP ).

the idea, we do not possess hard evidence that Archimedes discovered this
on his own.

Unfortunately, Archimedes did not add much to the Euclidean definition
of a tangent line, but he did extend the definition to his spiral and provides
a unique way to construct the tangent line in Proposition 20:

Theorem 5 (Archimedes’ tangent line to spiral) If P be any point on
the first turn of the spiral and OT be drawn perpendicular to OP , OT will
meet the tangent at P to the spiral in some point T ; and, if the circle drawn
with center O and radius OP meet the initial line in K, then OT is equal to
the arc of this circle between K and P measured in the “forward” direction
of the spiral.

This result is illustrated in Figure 5, which shows a spiral generated by
the initial line through KO rotating counter-clockwise. Essentially, OT is
drawn perpendicular to OP and equal in length to arc KP . The tangent line
to the spiral at point P is found by joining PT . Of course, constructing a
straight line with length equal to the arc of a circle is in general not possible
by classic compass and straight-edge methods, because the length may in-
volve a multiple of π, which is transcendental and therefore not constructible.
(Recall that every constructible number is the root of some polynomial equa-
tion with rational coefficients [13].) Thus, the construction of the tangent
line is assumed in Proposition 20.

Archimedes proves Theorem 5 by his signature double reductio ad ab-
surdum, and we will give an outline below (for full details see [2]). In his
argument, he makes use of constructions by neusis (“insertion” or “inclina-
tion”), where a straight line has to be drawn through a given a point and from
which two given curves cut off a segment of given length [8]. Archimedes’
proofs for each neusis that we will need below are contained in Propositions
7 and 8 of On Spirals. Though some have pointed out the logical gaps in
Archimedes’ reasoning [8, 14], we will simply assume the validity of the neu-
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Figure 6: Archimedes’ construction of his first neusis.

sis constructions. Referring to Figures 6 and 7, we wish to show that OT is
equal to the length of the arc KP .

First, suppose OT is greater than the arc KP . We draw OU such that
(arc KP ) < OU < OT (Figure 6). By Proposition 7 (neusis), it is possible
to draw OQF such that

FQ

PQ
=
OP

OU

Then

FQ

OQ
=
PQ

OU
<

arc PQ

arc KP
and

OF

OQ
<

arc KQ

arc KP
<
OR

OP

But OQ = OP , so OF < OR, which is impossible. Therefore, OT is not
greater than the arc KP .

Next, suppose OT is less than the arc KP . We draw OU ′ such that
OU ′ > OT but OU ′ < (arc KP ) (Figure 7). By Proposition 8 (neusis), it
is possible to draw OKF ′ such that

F ′Q′

PG
=
OP

OU ′

Then

F ′Q′

OQ′
=
PG

OU ′
>

arc PQ′

arc KP
and

OF ′

OQ′
<

arc KQ′

arc KP
<
OR′

OP

But OQ′ = OP , so OF ′ < OR′, which is impossible. Therefore, OT is
not less than the arc KP .

16



Figure 7: Archimedes’ construction of his second neusis.

Since OT is neither greater than nor less than arc KP , it must equal
KP , which was to be shown.

Overall, Archimedes’ treatment of tangent lines is far from the ideas of
differential calculus. His viewpoint is static and does not involve any ratios
of change, which is unsurprising given that the notion of tangents and slopes
as rates of change is reliant upon concepts of functions and limits. Nowhere
in Greek mathematics is there the recognition of the need for limits, either
for determining areas or tangents, and “even for the very definition of these
ideas which intuition vaguely suggests” [4]. It is especially for his treatment
of tangents that we cannot ascribe to Archimedes the discovery of calculus:
he did not see the relationship between integration and differentiation which
is fundamental to the calculus as a full-fledged branch of mathematics. This
feat was not accomplished until the 17th century, when the time was ripe
for discovery, and Newton and Leibniz seized upon ideas which had been
accumulating for millennia.

Conclusion

We find in Archimedes’ astounding list of discoveries many topics that can
now be tamed with methods of the calculus: areas of circles, spirals, parabo-
las, and other conic sections; volumes of spheres, cylinders, cones, paraboloids,
and ellipsoids; surface areas of spheres and spheroids; summations of geo-
metric series; approximations for π and

√
3; tangent lines to curves; and

applications in mechanics, hydrostatics, and centers of gravity. Our investi-
gations above only constitute a small fraction of his pioneering work which
preceded the development of the calculus. However, the fact that Archimedes
addressed many problems that now appear in today’s calculus classrooms
does not imply that he necessarily “did” calculus.
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Ultimately, the delineation between calculus and the calculus as a fully
realized branch of mathematics involves a recognition of the inverse relation-
ship between area problems (integrals) and tangent problems (derivatives),
i.e. the fundamental theorem of the calculus. Many historians also look for
general methods or computational algorithms for tackling related problems,
instead of them being treated on a case-by-case basis. These criteria are not
met in the works of Archimedes. In general, he consistently exploits special
properties of geometric constructions, and he tends not to take advantage of
previous solutions to similar problems [9]. He does not explicitly introduce
a limit concept, although most modern analyses of his work (including the
one presently) make note of equivalent results using passages to the limit
and limit-definitions of integrals. We have seen that he does not perform
integration, but rather, he uses clever devices for avoiding integration.

We might say that Archimedes anticipated the calculus in that he had
many of the pieces, but the missing pieces and the tools to complete the puz-
zle were not available until the 17th century. The conclusion that he did not
do calculus does not nullify his outstanding achievements, which spanned the
entirety of mathematics known during his lifetime. He expanded the field
to include ideas so profound that they were not improved upon for centuries
to come. Of his mechanical method, he imagined that “some, either of my
contemporaries or of my successors, will, by means of the method when once
established, be able to discover other theorems in addition, which have not
yet occurred to me” [2]. Thus, Archimedes highlights the importance of un-
derstanding the techniques of our predecessors: that we might, by imitation
or by extension, discover today what they could not.

18



References

[1] Apostol, Tom M. Calculus, Volume I. One-Variable Calculus, with an
Introduction to Linear Algebra. Second Edition. New York: John Wiley
& Sons, Inc., 1967.

[2] Archimedes. The Works of Archimedes. With Supplement The Method
of Archimedes. Trans. by Thomas L. Heath. First published 1897 &
1912. New York: Dover Publications, Inc., 2002.

[3] Berryman, Sylvia. “Democritus”. In: The Stanford Encyclopedia of Phi-
losophy. Ed. by Edward N. Zalta. Winter 2016. Metaphysics Research
Lab, Stanford University, 2016.

[4] Boyer, Carl B. The History of the Calculus and its Conceptual Devel-
opment. New York: Dover Publications, Inc., 1959.

[5] Bressoud, David. A Radical Approach to Real Analysis. Second edition.
The Mathematical Association of America, 2007.

[6] Bressoud, David M. Calculus Reordered. A History of the Big Ideas.
Princeton and Oxford: Princeton University Press, 2019.

[7] Cicero, Marcus Tullius. Tusculan Disputations, Book V. Trans. by C.D.
Yonge. Accessed on Project Gutenberg. New York: Harper & Brothers,
1877. url: https://www.gutenberg.org/files/14988/14988-
h/14988-h.htm.

[8] Dijksterhuis, E.J. Archimedes. Trans. by C. Dikshoorn. First published
1938. Princeton, New Jersey: Princeton University Press, 1987.

[9] Edwards Jr., C.H. The Historical Development of the Calculus. New
York: Springer-Verlag, Inc., 1979.

[10] Euclid. Euclid’s Elements. Ed. by David E. Joyce. Department of
Mathematics and Computer Science, Clark University. 2020. url: https:
//mathcs.clarku.edu/~djoyce/java/elements/elements.html.

[11] Eves, Howard. An Introduction to the History of Mathematics. Sixth
edition. Brooks/Cole, Thompson Learning, Inc., 1990.

[12] Fauvel, John and Gray, Jeremy. The History of Mathematics. A Reader.
New York: The Open University, Palgrave Macmillan, 1987.

[13] Hadlock, Charles Robert. Field Theory and Its Classical Problems.
The Carus Mathematical Monographs Number 19. United States: The
Mathematical Association of America, 1978.

[14] Heath, Thomas L. A History of Greek Mathematics, Volume II. From
Aristarchus to Diophantus. First published 1921. New York: Dover
Publications, Inc., 1981.

[15] Katz, Victor J. A History of Mathematics. An Introduction. Third edi-
tion. Addison-Wesley, Pearson Education, Inc., 2009.

19



[16] Kline, Morris. Mathematical Thought from Ancient to Modern Times.
Volume 1. New York, Oxford: Oxford University Press, 1972.

[17] Netz, Reviel and Noel, William. The Archimedes Codex. Revealing
the Secrets of the World’s Greatest Palimpsest. London: Weidenfeld
& Nicolson, 2007.

[18] Plutarch. “Marcellus”. In: Newman, James R. The World of Mathemat-
ics. Volume I. New York: Simon and Schuster, 1956, pp. 180–185.

[19] Sarton, George. A History of Science. Hellenistic Science and Culture
in the Last Three Centuries B.C. Cambridge: Harvard University Press,
1959.

[20] Shelburne, Brian J. “Archimedes and the Parabola”. In: Math Horizons
18.4 (Apr. 2011), pp. 14–17. doi: 10.4169/194762111X12986558508812.

[21] Stein, Sherman. Archimedes: What Did He Do Besides Cry Eureka?
The Mathematical Association of America, 1999.

[22] Stillwell, John. Mathematics and Its History. Third edition. New York:
Springer Science+Business Media, Undergraduate Texts in Mathemat-
ics, 2010.

[23] Swain, Gordon and Dence, Thomas. “Archimedes’ Quadrature of the
Parabola Revisited”. In:Mathematics Magazine 72.1 (Apr. 1998), pp. 123–
130. doi: 10.1080/0025570X.1998.11996612.

20


